1814 lines
71 KiB
C++
1814 lines
71 KiB
C++
|
//=======================================================================
|
||
|
// Copyright (c) Aaron Windsor 2007
|
||
|
//
|
||
|
// Distributed under the Boost Software License, Version 1.0. (See
|
||
|
// accompanying file LICENSE_1_0.txt or copy at
|
||
|
// http://www.boost.org/LICENSE_1_0.txt)
|
||
|
//=======================================================================
|
||
|
#ifndef __BOYER_MYRVOLD_IMPL_HPP__
|
||
|
#define __BOYER_MYRVOLD_IMPL_HPP__
|
||
|
|
||
|
#include <vector>
|
||
|
#include <list>
|
||
|
#include <boost/next_prior.hpp>
|
||
|
#include <boost/config.hpp> //for std::min macros
|
||
|
#include <boost/shared_ptr.hpp>
|
||
|
#include <boost/tuple/tuple.hpp>
|
||
|
#include <boost/property_map/property_map.hpp>
|
||
|
#include <boost/graph/graph_traits.hpp>
|
||
|
#include <boost/graph/depth_first_search.hpp>
|
||
|
#include <boost/graph/planar_detail/face_handles.hpp>
|
||
|
#include <boost/graph/planar_detail/face_iterators.hpp>
|
||
|
#include <boost/graph/planar_detail/bucket_sort.hpp>
|
||
|
|
||
|
namespace boost
|
||
|
{
|
||
|
namespace detail
|
||
|
{
|
||
|
enum bm_case_t
|
||
|
{
|
||
|
BM_NO_CASE_CHOSEN,
|
||
|
BM_CASE_A,
|
||
|
BM_CASE_B,
|
||
|
BM_CASE_C,
|
||
|
BM_CASE_D,
|
||
|
BM_CASE_E
|
||
|
};
|
||
|
}
|
||
|
|
||
|
template < typename LowPointMap, typename DFSParentMap, typename DFSNumberMap,
|
||
|
typename LeastAncestorMap, typename DFSParentEdgeMap, typename SizeType >
|
||
|
struct planar_dfs_visitor : public dfs_visitor<>
|
||
|
{
|
||
|
planar_dfs_visitor(LowPointMap lpm, DFSParentMap dfs_p, DFSNumberMap dfs_n,
|
||
|
LeastAncestorMap lam, DFSParentEdgeMap dfs_edge)
|
||
|
: low(lpm)
|
||
|
, parent(dfs_p)
|
||
|
, df_number(dfs_n)
|
||
|
, least_ancestor(lam)
|
||
|
, df_edge(dfs_edge)
|
||
|
, count(0)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
template < typename Vertex, typename Graph >
|
||
|
void start_vertex(const Vertex& u, Graph&)
|
||
|
{
|
||
|
put(parent, u, u);
|
||
|
put(least_ancestor, u, count);
|
||
|
}
|
||
|
|
||
|
template < typename Vertex, typename Graph >
|
||
|
void discover_vertex(const Vertex& u, Graph&)
|
||
|
{
|
||
|
put(low, u, count);
|
||
|
put(df_number, u, count);
|
||
|
++count;
|
||
|
}
|
||
|
|
||
|
template < typename Edge, typename Graph >
|
||
|
void tree_edge(const Edge& e, Graph& g)
|
||
|
{
|
||
|
typedef typename graph_traits< Graph >::vertex_descriptor vertex_t;
|
||
|
vertex_t s(source(e, g));
|
||
|
vertex_t t(target(e, g));
|
||
|
|
||
|
put(parent, t, s);
|
||
|
put(df_edge, t, e);
|
||
|
put(least_ancestor, t, get(df_number, s));
|
||
|
}
|
||
|
|
||
|
template < typename Edge, typename Graph >
|
||
|
void back_edge(const Edge& e, Graph& g)
|
||
|
{
|
||
|
typedef typename graph_traits< Graph >::vertex_descriptor vertex_t;
|
||
|
typedef typename graph_traits< Graph >::vertices_size_type v_size_t;
|
||
|
|
||
|
vertex_t s(source(e, g));
|
||
|
vertex_t t(target(e, g));
|
||
|
BOOST_USING_STD_MIN();
|
||
|
|
||
|
if (t != get(parent, s))
|
||
|
{
|
||
|
v_size_t s_low_df_number = get(low, s);
|
||
|
v_size_t t_df_number = get(df_number, t);
|
||
|
v_size_t s_least_ancestor_df_number = get(least_ancestor, s);
|
||
|
|
||
|
put(low, s,
|
||
|
min BOOST_PREVENT_MACRO_SUBSTITUTION(
|
||
|
s_low_df_number, t_df_number));
|
||
|
|
||
|
put(least_ancestor, s,
|
||
|
min BOOST_PREVENT_MACRO_SUBSTITUTION(
|
||
|
s_least_ancestor_df_number, t_df_number));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template < typename Vertex, typename Graph >
|
||
|
void finish_vertex(const Vertex& u, Graph&)
|
||
|
{
|
||
|
typedef typename graph_traits< Graph >::vertices_size_type v_size_t;
|
||
|
|
||
|
Vertex u_parent = get(parent, u);
|
||
|
v_size_t u_parent_lowpoint = get(low, u_parent);
|
||
|
v_size_t u_lowpoint = get(low, u);
|
||
|
BOOST_USING_STD_MIN();
|
||
|
|
||
|
if (u_parent != u)
|
||
|
{
|
||
|
put(low, u_parent,
|
||
|
min BOOST_PREVENT_MACRO_SUBSTITUTION(
|
||
|
u_lowpoint, u_parent_lowpoint));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
LowPointMap low;
|
||
|
DFSParentMap parent;
|
||
|
DFSNumberMap df_number;
|
||
|
LeastAncestorMap least_ancestor;
|
||
|
DFSParentEdgeMap df_edge;
|
||
|
SizeType count;
|
||
|
};
|
||
|
|
||
|
template < typename Graph, typename VertexIndexMap,
|
||
|
typename StoreOldHandlesPolicy = graph::detail::store_old_handles,
|
||
|
typename StoreEmbeddingPolicy = graph::detail::recursive_lazy_list >
|
||
|
class boyer_myrvold_impl
|
||
|
{
|
||
|
|
||
|
typedef typename graph_traits< Graph >::vertices_size_type v_size_t;
|
||
|
typedef typename graph_traits< Graph >::vertex_descriptor vertex_t;
|
||
|
typedef typename graph_traits< Graph >::edge_descriptor edge_t;
|
||
|
typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
|
||
|
typedef typename graph_traits< Graph >::edge_iterator edge_iterator_t;
|
||
|
typedef
|
||
|
typename graph_traits< Graph >::out_edge_iterator out_edge_iterator_t;
|
||
|
typedef graph::detail::face_handle< Graph, StoreOldHandlesPolicy,
|
||
|
StoreEmbeddingPolicy >
|
||
|
face_handle_t;
|
||
|
typedef std::vector< vertex_t > vertex_vector_t;
|
||
|
typedef std::vector< edge_t > edge_vector_t;
|
||
|
typedef std::list< vertex_t > vertex_list_t;
|
||
|
typedef std::list< face_handle_t > face_handle_list_t;
|
||
|
typedef boost::shared_ptr< face_handle_list_t > face_handle_list_ptr_t;
|
||
|
typedef boost::shared_ptr< vertex_list_t > vertex_list_ptr_t;
|
||
|
typedef boost::tuple< vertex_t, bool, bool > merge_stack_frame_t;
|
||
|
typedef std::vector< merge_stack_frame_t > merge_stack_t;
|
||
|
|
||
|
template < typename T > struct map_vertex_to_
|
||
|
{
|
||
|
typedef iterator_property_map< typename std::vector< T >::iterator,
|
||
|
VertexIndexMap >
|
||
|
type;
|
||
|
};
|
||
|
|
||
|
typedef typename map_vertex_to_< v_size_t >::type vertex_to_v_size_map_t;
|
||
|
typedef typename map_vertex_to_< vertex_t >::type vertex_to_vertex_map_t;
|
||
|
typedef typename map_vertex_to_< edge_t >::type vertex_to_edge_map_t;
|
||
|
typedef typename map_vertex_to_< vertex_list_ptr_t >::type
|
||
|
vertex_to_vertex_list_ptr_map_t;
|
||
|
typedef typename map_vertex_to_< edge_vector_t >::type
|
||
|
vertex_to_edge_vector_map_t;
|
||
|
typedef typename map_vertex_to_< bool >::type vertex_to_bool_map_t;
|
||
|
typedef typename map_vertex_to_< face_handle_t >::type
|
||
|
vertex_to_face_handle_map_t;
|
||
|
typedef typename map_vertex_to_< face_handle_list_ptr_t >::type
|
||
|
vertex_to_face_handle_list_ptr_map_t;
|
||
|
typedef typename map_vertex_to_< typename vertex_list_t::iterator >::type
|
||
|
vertex_to_separated_node_map_t;
|
||
|
|
||
|
template < typename BicompSideToTraverse = single_side,
|
||
|
typename VisitorType = lead_visitor, typename Time = current_iteration >
|
||
|
struct face_vertex_iterator
|
||
|
{
|
||
|
typedef face_iterator< Graph, vertex_to_face_handle_map_t, vertex_t,
|
||
|
BicompSideToTraverse, VisitorType, Time >
|
||
|
type;
|
||
|
};
|
||
|
|
||
|
template < typename BicompSideToTraverse = single_side,
|
||
|
typename Time = current_iteration >
|
||
|
struct face_edge_iterator
|
||
|
{
|
||
|
typedef face_iterator< Graph, vertex_to_face_handle_map_t, edge_t,
|
||
|
BicompSideToTraverse, lead_visitor, Time >
|
||
|
type;
|
||
|
};
|
||
|
|
||
|
public:
|
||
|
boyer_myrvold_impl(const Graph& arg_g, VertexIndexMap arg_vm)
|
||
|
: g(arg_g)
|
||
|
, vm(arg_vm)
|
||
|
,
|
||
|
|
||
|
low_point_vector(num_vertices(g))
|
||
|
, dfs_parent_vector(num_vertices(g))
|
||
|
, dfs_number_vector(num_vertices(g))
|
||
|
, least_ancestor_vector(num_vertices(g))
|
||
|
, pertinent_roots_vector(num_vertices(g))
|
||
|
, backedge_flag_vector(num_vertices(g), num_vertices(g) + 1)
|
||
|
, visited_vector(num_vertices(g), num_vertices(g) + 1)
|
||
|
, face_handles_vector(num_vertices(g))
|
||
|
, dfs_child_handles_vector(num_vertices(g))
|
||
|
, separated_dfs_child_list_vector(num_vertices(g))
|
||
|
, separated_node_in_parent_list_vector(num_vertices(g))
|
||
|
, canonical_dfs_child_vector(num_vertices(g))
|
||
|
, flipped_vector(num_vertices(g), false)
|
||
|
, backedges_vector(num_vertices(g))
|
||
|
, dfs_parent_edge_vector(num_vertices(g))
|
||
|
,
|
||
|
|
||
|
vertices_by_dfs_num(num_vertices(g))
|
||
|
,
|
||
|
|
||
|
low_point(low_point_vector.begin(), vm)
|
||
|
, dfs_parent(dfs_parent_vector.begin(), vm)
|
||
|
, dfs_number(dfs_number_vector.begin(), vm)
|
||
|
, least_ancestor(least_ancestor_vector.begin(), vm)
|
||
|
, pertinent_roots(pertinent_roots_vector.begin(), vm)
|
||
|
, backedge_flag(backedge_flag_vector.begin(), vm)
|
||
|
, visited(visited_vector.begin(), vm)
|
||
|
, face_handles(face_handles_vector.begin(), vm)
|
||
|
, dfs_child_handles(dfs_child_handles_vector.begin(), vm)
|
||
|
, separated_dfs_child_list(separated_dfs_child_list_vector.begin(), vm)
|
||
|
, separated_node_in_parent_list(
|
||
|
separated_node_in_parent_list_vector.begin(), vm)
|
||
|
, canonical_dfs_child(canonical_dfs_child_vector.begin(), vm)
|
||
|
, flipped(flipped_vector.begin(), vm)
|
||
|
, backedges(backedges_vector.begin(), vm)
|
||
|
, dfs_parent_edge(dfs_parent_edge_vector.begin(), vm)
|
||
|
|
||
|
{
|
||
|
|
||
|
planar_dfs_visitor< vertex_to_v_size_map_t, vertex_to_vertex_map_t,
|
||
|
vertex_to_v_size_map_t, vertex_to_v_size_map_t,
|
||
|
vertex_to_edge_map_t, v_size_t >
|
||
|
vis(low_point, dfs_parent, dfs_number, least_ancestor,
|
||
|
dfs_parent_edge);
|
||
|
|
||
|
// Perform a depth-first search to find each vertex's low point, least
|
||
|
// ancestor, and dfs tree information
|
||
|
depth_first_search(g, visitor(vis).vertex_index_map(vm));
|
||
|
|
||
|
// Sort vertices by their lowpoint - need this later in the constructor
|
||
|
vertex_vector_t vertices_by_lowpoint(num_vertices(g));
|
||
|
std::copy(vertices(g).first, vertices(g).second,
|
||
|
vertices_by_lowpoint.begin());
|
||
|
bucket_sort(vertices_by_lowpoint.begin(), vertices_by_lowpoint.end(),
|
||
|
low_point, num_vertices(g));
|
||
|
|
||
|
// Sort vertices by their dfs number - need this to iterate by reverse
|
||
|
// DFS number in the main loop.
|
||
|
std::copy(
|
||
|
vertices(g).first, vertices(g).second, vertices_by_dfs_num.begin());
|
||
|
bucket_sort(vertices_by_dfs_num.begin(), vertices_by_dfs_num.end(),
|
||
|
dfs_number, num_vertices(g));
|
||
|
|
||
|
// Initialize face handles. A face handle is an abstraction that serves
|
||
|
// two uses in our implementation - it allows us to efficiently move
|
||
|
// along the outer face of embedded bicomps in a partially embedded
|
||
|
// graph, and it provides storage for the planar embedding. Face
|
||
|
// handles are implemented by a sequence of edges and are associated
|
||
|
// with a particular vertex - the sequence of edges represents the
|
||
|
// current embedding of edges around that vertex, and the first and
|
||
|
// last edges in the sequence represent the pair of edges on the outer
|
||
|
// face that are adjacent to the associated vertex. This lets us embed
|
||
|
// edges in the graph by just pushing them on the front or back of the
|
||
|
// sequence of edges held by the face handles.
|
||
|
//
|
||
|
// Our algorithm starts with a DFS tree of edges (where every vertex is
|
||
|
// an articulation point and every edge is a singleton bicomp) and
|
||
|
// repeatedly merges bicomps by embedding additional edges. Note that
|
||
|
// any bicomp at any point in the algorithm can be associated with a
|
||
|
// unique edge connecting the vertex of that bicomp with the lowest DFS
|
||
|
// number (which we refer to as the "root" of the bicomp) with its DFS
|
||
|
// child in the bicomp: the existence of two such edges would contradict
|
||
|
// the properties of a DFS tree. We refer to the DFS child of the root
|
||
|
// of a bicomp as the "canonical DFS child" of the bicomp. Note that a
|
||
|
// vertex can be the root of more than one bicomp.
|
||
|
//
|
||
|
// We move around the external faces of a bicomp using a few property
|
||
|
// maps, which we'll initialize presently:
|
||
|
//
|
||
|
// - face_handles: maps a vertex to a face handle that can be used to
|
||
|
// move "up" a bicomp. For a vertex that isn't an articulation point,
|
||
|
// this holds the face handles that can be used to move around that
|
||
|
// vertex's unique bicomp. For a vertex that is an articulation point,
|
||
|
// this holds the face handles associated with the unique bicomp that
|
||
|
// the vertex is NOT the root of. These handles can therefore be used
|
||
|
// to move from any point on the outer face of the tree of bicomps
|
||
|
// around the current outer face towards the root of the DFS tree.
|
||
|
//
|
||
|
// - dfs_child_handles: these are used to hold face handles for
|
||
|
// vertices that are articulation points - dfs_child_handles[v] holds
|
||
|
// the face handles corresponding to vertex u in the bicomp with root
|
||
|
// u and canonical DFS child v.
|
||
|
//
|
||
|
// - canonical_dfs_child: this property map allows one to determine the
|
||
|
// canonical DFS child of a bicomp while traversing the outer face.
|
||
|
// This property map is only valid when applied to one of the two
|
||
|
// vertices adjacent to the root of the bicomp on the outer face. To
|
||
|
// be more precise, if v is the canonical DFS child of a bicomp,
|
||
|
// canonical_dfs_child[dfs_child_handles[v].first_vertex()] == v and
|
||
|
// canonical_dfs_child[dfs_child_handles[v].second_vertex()] == v.
|
||
|
//
|
||
|
// - pertinent_roots: given a vertex v, pertinent_roots[v] contains a
|
||
|
// list of face handles pointing to the top of bicomps that need to
|
||
|
// be visited by the current walkdown traversal (since they lead to
|
||
|
// backedges that need to be embedded). These lists are populated by
|
||
|
// the walkup and consumed by the walkdown.
|
||
|
|
||
|
vertex_iterator_t vi, vi_end;
|
||
|
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
|
||
|
{
|
||
|
vertex_t v(*vi);
|
||
|
vertex_t parent = dfs_parent[v];
|
||
|
|
||
|
if (parent != v)
|
||
|
{
|
||
|
edge_t parent_edge = dfs_parent_edge[v];
|
||
|
add_to_embedded_edges(parent_edge, StoreOldHandlesPolicy());
|
||
|
face_handles[v] = face_handle_t(v, parent_edge, g);
|
||
|
dfs_child_handles[v] = face_handle_t(parent, parent_edge, g);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
face_handles[v] = face_handle_t(v);
|
||
|
dfs_child_handles[v] = face_handle_t(parent);
|
||
|
}
|
||
|
|
||
|
canonical_dfs_child[v] = v;
|
||
|
pertinent_roots[v] = face_handle_list_ptr_t(new face_handle_list_t);
|
||
|
separated_dfs_child_list[v] = vertex_list_ptr_t(new vertex_list_t);
|
||
|
}
|
||
|
|
||
|
// We need to create a list of not-yet-merged depth-first children for
|
||
|
// each vertex that will be updated as bicomps get merged. We sort each
|
||
|
// list by ascending lowpoint, which allows the externally_active
|
||
|
// function to run in constant time, and we keep a pointer to each
|
||
|
// vertex's representation in its parent's list, which allows merging
|
||
|
// in constant time.
|
||
|
|
||
|
for (typename vertex_vector_t::iterator itr
|
||
|
= vertices_by_lowpoint.begin();
|
||
|
itr != vertices_by_lowpoint.end(); ++itr)
|
||
|
{
|
||
|
vertex_t v(*itr);
|
||
|
vertex_t parent(dfs_parent[v]);
|
||
|
if (v != parent)
|
||
|
{
|
||
|
separated_node_in_parent_list[v]
|
||
|
= separated_dfs_child_list[parent]->insert(
|
||
|
separated_dfs_child_list[parent]->end(), v);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The merge stack holds path information during a walkdown iteration
|
||
|
merge_stack.reserve(num_vertices(g));
|
||
|
}
|
||
|
|
||
|
bool is_planar()
|
||
|
{
|
||
|
|
||
|
// This is the main algorithm: starting with a DFS tree of embedded
|
||
|
// edges (which, since it's a tree, is planar), iterate through all
|
||
|
// vertices by reverse DFS number, attempting to embed all backedges
|
||
|
// connecting the current vertex to vertices with higher DFS numbers.
|
||
|
//
|
||
|
// The walkup is a procedure that examines all such backedges and sets
|
||
|
// up the required data structures so that they can be searched by the
|
||
|
// walkdown in linear time. The walkdown does the actual work of
|
||
|
// embedding edges and flipping bicomps, and can identify when it has
|
||
|
// come across a kuratowski subgraph.
|
||
|
//
|
||
|
// store_old_face_handles caches face handles from the previous
|
||
|
// iteration - this is used only for the kuratowski subgraph isolation,
|
||
|
// and is therefore dispatched based on the StoreOldHandlesPolicy.
|
||
|
//
|
||
|
// clean_up_embedding does some clean-up and fills in values that have
|
||
|
// to be computed lazily during the actual execution of the algorithm
|
||
|
// (for instance, whether or not a bicomp is flipped in the final
|
||
|
// embedding). It's dispatched on the the StoreEmbeddingPolicy, since
|
||
|
// it's not needed if an embedding isn't desired.
|
||
|
|
||
|
typename vertex_vector_t::reverse_iterator vi, vi_end;
|
||
|
|
||
|
vi_end = vertices_by_dfs_num.rend();
|
||
|
for (vi = vertices_by_dfs_num.rbegin(); vi != vi_end; ++vi)
|
||
|
{
|
||
|
|
||
|
store_old_face_handles(StoreOldHandlesPolicy());
|
||
|
|
||
|
vertex_t v(*vi);
|
||
|
|
||
|
walkup(v);
|
||
|
|
||
|
if (!walkdown(v))
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
clean_up_embedding(StoreEmbeddingPolicy());
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
void walkup(vertex_t v)
|
||
|
{
|
||
|
|
||
|
// The point of the walkup is to follow all backedges from v to
|
||
|
// vertices with higher DFS numbers, and update pertinent_roots
|
||
|
// for the bicomp roots on the path from backedge endpoints up
|
||
|
// to v. This will set the stage for the walkdown to efficiently
|
||
|
// traverse the graph of bicomps down from v.
|
||
|
|
||
|
typedef
|
||
|
typename face_vertex_iterator< both_sides >::type walkup_iterator_t;
|
||
|
|
||
|
out_edge_iterator_t oi, oi_end;
|
||
|
for (boost::tie(oi, oi_end) = out_edges(v, g); oi != oi_end; ++oi)
|
||
|
{
|
||
|
edge_t e(*oi);
|
||
|
vertex_t e_source(source(e, g));
|
||
|
vertex_t e_target(target(e, g));
|
||
|
|
||
|
if (e_source == e_target)
|
||
|
{
|
||
|
self_loops.push_back(e);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
vertex_t w(e_source == v ? e_target : e_source);
|
||
|
|
||
|
// continue if not a back edge or already embedded
|
||
|
if (dfs_number[w] < dfs_number[v] || e == dfs_parent_edge[w])
|
||
|
continue;
|
||
|
|
||
|
backedges[w].push_back(e);
|
||
|
|
||
|
v_size_t timestamp = dfs_number[v];
|
||
|
backedge_flag[w] = timestamp;
|
||
|
|
||
|
walkup_iterator_t walkup_itr(w, face_handles);
|
||
|
walkup_iterator_t walkup_end;
|
||
|
vertex_t lead_vertex = w;
|
||
|
|
||
|
while (true)
|
||
|
{
|
||
|
|
||
|
// Move to the root of the current bicomp or the first visited
|
||
|
// vertex on the bicomp by going up each side in parallel
|
||
|
|
||
|
while (walkup_itr != walkup_end
|
||
|
&& visited[*walkup_itr] != timestamp)
|
||
|
{
|
||
|
lead_vertex = *walkup_itr;
|
||
|
visited[lead_vertex] = timestamp;
|
||
|
++walkup_itr;
|
||
|
}
|
||
|
|
||
|
// If we've found the root of a bicomp through a path we haven't
|
||
|
// seen before, update pertinent_roots with a handle to the
|
||
|
// current bicomp. Otherwise, we've just seen a path we've been
|
||
|
// up before, so break out of the main while loop.
|
||
|
|
||
|
if (walkup_itr == walkup_end)
|
||
|
{
|
||
|
vertex_t dfs_child = canonical_dfs_child[lead_vertex];
|
||
|
vertex_t parent = dfs_parent[dfs_child];
|
||
|
|
||
|
visited[dfs_child_handles[dfs_child].first_vertex()]
|
||
|
= timestamp;
|
||
|
visited[dfs_child_handles[dfs_child].second_vertex()]
|
||
|
= timestamp;
|
||
|
|
||
|
if (low_point[dfs_child] < dfs_number[v]
|
||
|
|| least_ancestor[dfs_child] < dfs_number[v])
|
||
|
{
|
||
|
pertinent_roots[parent]->push_back(
|
||
|
dfs_child_handles[dfs_child]);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
pertinent_roots[parent]->push_front(
|
||
|
dfs_child_handles[dfs_child]);
|
||
|
}
|
||
|
|
||
|
if (parent != v && visited[parent] != timestamp)
|
||
|
{
|
||
|
walkup_itr = walkup_iterator_t(parent, face_handles);
|
||
|
lead_vertex = parent;
|
||
|
}
|
||
|
else
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool walkdown(vertex_t v)
|
||
|
{
|
||
|
// This procedure is where all of the action is - pertinent_roots
|
||
|
// has already been set up by the walkup, so we just need to move
|
||
|
// down bicomps from v until we find vertices that have been
|
||
|
// labeled as backedge endpoints. Once we find such a vertex, we
|
||
|
// embed the corresponding edge and glue together the bicomps on
|
||
|
// the path connecting the two vertices in the edge. This may
|
||
|
// involve flipping bicomps along the way.
|
||
|
|
||
|
vertex_t w; // the other endpoint of the edge we're embedding
|
||
|
|
||
|
while (!pertinent_roots[v]->empty())
|
||
|
{
|
||
|
|
||
|
face_handle_t root_face_handle = pertinent_roots[v]->front();
|
||
|
face_handle_t curr_face_handle = root_face_handle;
|
||
|
pertinent_roots[v]->pop_front();
|
||
|
|
||
|
merge_stack.clear();
|
||
|
|
||
|
while (true)
|
||
|
{
|
||
|
|
||
|
typename face_vertex_iterator<>::type first_face_itr,
|
||
|
second_face_itr, face_end;
|
||
|
vertex_t first_side_vertex
|
||
|
= graph_traits< Graph >::null_vertex();
|
||
|
vertex_t second_side_vertex
|
||
|
= graph_traits< Graph >::null_vertex();
|
||
|
vertex_t first_tail, second_tail;
|
||
|
|
||
|
first_tail = second_tail = curr_face_handle.get_anchor();
|
||
|
first_face_itr = typename face_vertex_iterator<>::type(
|
||
|
curr_face_handle, face_handles, first_side());
|
||
|
second_face_itr = typename face_vertex_iterator<>::type(
|
||
|
curr_face_handle, face_handles, second_side());
|
||
|
|
||
|
for (; first_face_itr != face_end; ++first_face_itr)
|
||
|
{
|
||
|
vertex_t face_vertex(*first_face_itr);
|
||
|
if (pertinent(face_vertex, v)
|
||
|
|| externally_active(face_vertex, v))
|
||
|
{
|
||
|
first_side_vertex = face_vertex;
|
||
|
second_side_vertex = face_vertex;
|
||
|
break;
|
||
|
}
|
||
|
first_tail = face_vertex;
|
||
|
}
|
||
|
|
||
|
if (first_side_vertex == graph_traits< Graph >::null_vertex()
|
||
|
|| first_side_vertex == curr_face_handle.get_anchor())
|
||
|
break;
|
||
|
|
||
|
for (; second_face_itr != face_end; ++second_face_itr)
|
||
|
{
|
||
|
vertex_t face_vertex(*second_face_itr);
|
||
|
if (pertinent(face_vertex, v)
|
||
|
|| externally_active(face_vertex, v))
|
||
|
{
|
||
|
second_side_vertex = face_vertex;
|
||
|
break;
|
||
|
}
|
||
|
second_tail = face_vertex;
|
||
|
}
|
||
|
|
||
|
vertex_t chosen;
|
||
|
bool chose_first_upper_path;
|
||
|
if (internally_active(first_side_vertex, v))
|
||
|
{
|
||
|
chosen = first_side_vertex;
|
||
|
chose_first_upper_path = true;
|
||
|
}
|
||
|
else if (internally_active(second_side_vertex, v))
|
||
|
{
|
||
|
chosen = second_side_vertex;
|
||
|
chose_first_upper_path = false;
|
||
|
}
|
||
|
else if (pertinent(first_side_vertex, v))
|
||
|
{
|
||
|
chosen = first_side_vertex;
|
||
|
chose_first_upper_path = true;
|
||
|
}
|
||
|
else if (pertinent(second_side_vertex, v))
|
||
|
{
|
||
|
chosen = second_side_vertex;
|
||
|
chose_first_upper_path = false;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
|
||
|
// If there's a pertinent vertex on the lower face
|
||
|
// between the first_face_itr and the second_face_itr,
|
||
|
// this graph isn't planar.
|
||
|
for (; *first_face_itr != second_side_vertex;
|
||
|
++first_face_itr)
|
||
|
{
|
||
|
vertex_t p(*first_face_itr);
|
||
|
if (pertinent(p, v))
|
||
|
{
|
||
|
// Found a Kuratowski subgraph
|
||
|
kuratowski_v = v;
|
||
|
kuratowski_x = first_side_vertex;
|
||
|
kuratowski_y = second_side_vertex;
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Otherwise, the fact that we didn't find a pertinent
|
||
|
// vertex on this face is fine - we should set the
|
||
|
// short-circuit edges and break out of this loop to
|
||
|
// start looking at a different pertinent root.
|
||
|
|
||
|
if (first_side_vertex == second_side_vertex)
|
||
|
{
|
||
|
if (first_tail != v)
|
||
|
{
|
||
|
vertex_t first
|
||
|
= face_handles[first_tail].first_vertex();
|
||
|
vertex_t second
|
||
|
= face_handles[first_tail].second_vertex();
|
||
|
boost::tie(first_side_vertex, first_tail)
|
||
|
= make_tuple(first_tail,
|
||
|
first == first_side_vertex ? second
|
||
|
: first);
|
||
|
}
|
||
|
else if (second_tail != v)
|
||
|
{
|
||
|
vertex_t first
|
||
|
= face_handles[second_tail].first_vertex();
|
||
|
vertex_t second
|
||
|
= face_handles[second_tail].second_vertex();
|
||
|
boost::tie(second_side_vertex, second_tail)
|
||
|
= make_tuple(second_tail,
|
||
|
first == second_side_vertex ? second
|
||
|
: first);
|
||
|
}
|
||
|
else
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
canonical_dfs_child[first_side_vertex]
|
||
|
= canonical_dfs_child[root_face_handle.first_vertex()];
|
||
|
canonical_dfs_child[second_side_vertex]
|
||
|
= canonical_dfs_child[root_face_handle.second_vertex()];
|
||
|
root_face_handle.set_first_vertex(first_side_vertex);
|
||
|
root_face_handle.set_second_vertex(second_side_vertex);
|
||
|
|
||
|
if (face_handles[first_side_vertex].first_vertex()
|
||
|
== first_tail)
|
||
|
face_handles[first_side_vertex].set_first_vertex(v);
|
||
|
else
|
||
|
face_handles[first_side_vertex].set_second_vertex(v);
|
||
|
|
||
|
if (face_handles[second_side_vertex].first_vertex()
|
||
|
== second_tail)
|
||
|
face_handles[second_side_vertex].set_first_vertex(v);
|
||
|
else
|
||
|
face_handles[second_side_vertex].set_second_vertex(v);
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// When we unwind the stack, we need to know which direction
|
||
|
// we came down from on the top face handle
|
||
|
|
||
|
bool chose_first_lower_path
|
||
|
= (chose_first_upper_path
|
||
|
&& face_handles[chosen].first_vertex() == first_tail)
|
||
|
|| (!chose_first_upper_path
|
||
|
&& face_handles[chosen].first_vertex() == second_tail);
|
||
|
|
||
|
// If there's a backedge at the chosen vertex, embed it now
|
||
|
if (backedge_flag[chosen] == dfs_number[v])
|
||
|
{
|
||
|
w = chosen;
|
||
|
|
||
|
backedge_flag[chosen] = num_vertices(g) + 1;
|
||
|
add_to_merge_points(chosen, StoreOldHandlesPolicy());
|
||
|
|
||
|
typename edge_vector_t::iterator ei, ei_end;
|
||
|
ei_end = backedges[chosen].end();
|
||
|
for (ei = backedges[chosen].begin(); ei != ei_end; ++ei)
|
||
|
{
|
||
|
edge_t e(*ei);
|
||
|
add_to_embedded_edges(e, StoreOldHandlesPolicy());
|
||
|
|
||
|
if (chose_first_lower_path)
|
||
|
face_handles[chosen].push_first(e, g);
|
||
|
else
|
||
|
face_handles[chosen].push_second(e, g);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
merge_stack.push_back(make_tuple(chosen,
|
||
|
chose_first_upper_path, chose_first_lower_path));
|
||
|
curr_face_handle = *pertinent_roots[chosen]->begin();
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Unwind the merge stack to the root, merging all bicomps
|
||
|
|
||
|
bool bottom_path_follows_first;
|
||
|
bool top_path_follows_first;
|
||
|
bool next_bottom_follows_first = chose_first_upper_path;
|
||
|
|
||
|
vertex_t merge_point = chosen;
|
||
|
|
||
|
while (!merge_stack.empty())
|
||
|
{
|
||
|
|
||
|
bottom_path_follows_first = next_bottom_follows_first;
|
||
|
boost::tie(merge_point, next_bottom_follows_first,
|
||
|
top_path_follows_first)
|
||
|
= merge_stack.back();
|
||
|
merge_stack.pop_back();
|
||
|
|
||
|
face_handle_t top_handle(face_handles[merge_point]);
|
||
|
face_handle_t bottom_handle(
|
||
|
*pertinent_roots[merge_point]->begin());
|
||
|
|
||
|
vertex_t bottom_dfs_child = canonical_dfs_child
|
||
|
[pertinent_roots[merge_point]->begin()->first_vertex()];
|
||
|
|
||
|
remove_vertex_from_separated_dfs_child_list(
|
||
|
canonical_dfs_child[pertinent_roots[merge_point]
|
||
|
->begin()
|
||
|
->first_vertex()]);
|
||
|
|
||
|
pertinent_roots[merge_point]->pop_front();
|
||
|
|
||
|
add_to_merge_points(
|
||
|
top_handle.get_anchor(), StoreOldHandlesPolicy());
|
||
|
|
||
|
if (top_path_follows_first && bottom_path_follows_first)
|
||
|
{
|
||
|
bottom_handle.flip();
|
||
|
top_handle.glue_first_to_second(bottom_handle);
|
||
|
}
|
||
|
else if (!top_path_follows_first
|
||
|
&& bottom_path_follows_first)
|
||
|
{
|
||
|
flipped[bottom_dfs_child] = true;
|
||
|
top_handle.glue_second_to_first(bottom_handle);
|
||
|
}
|
||
|
else if (top_path_follows_first
|
||
|
&& !bottom_path_follows_first)
|
||
|
{
|
||
|
flipped[bottom_dfs_child] = true;
|
||
|
top_handle.glue_first_to_second(bottom_handle);
|
||
|
}
|
||
|
else //! top_path_follows_first &&
|
||
|
//! !bottom_path_follows_first
|
||
|
{
|
||
|
bottom_handle.flip();
|
||
|
top_handle.glue_second_to_first(bottom_handle);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Finally, embed all edges (v,w) at their upper end points
|
||
|
canonical_dfs_child[w]
|
||
|
= canonical_dfs_child[root_face_handle.first_vertex()];
|
||
|
|
||
|
add_to_merge_points(
|
||
|
root_face_handle.get_anchor(), StoreOldHandlesPolicy());
|
||
|
|
||
|
typename edge_vector_t::iterator ei, ei_end;
|
||
|
ei_end = backedges[chosen].end();
|
||
|
for (ei = backedges[chosen].begin(); ei != ei_end; ++ei)
|
||
|
{
|
||
|
if (next_bottom_follows_first)
|
||
|
root_face_handle.push_first(*ei, g);
|
||
|
else
|
||
|
root_face_handle.push_second(*ei, g);
|
||
|
}
|
||
|
|
||
|
backedges[chosen].clear();
|
||
|
curr_face_handle = root_face_handle;
|
||
|
|
||
|
} // while(true)
|
||
|
|
||
|
} // while(!pertinent_roots[v]->empty())
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void store_old_face_handles(graph::detail::no_old_handles) {}
|
||
|
|
||
|
void store_old_face_handles(graph::detail::store_old_handles)
|
||
|
{
|
||
|
for (typename std::vector< vertex_t >::iterator mp_itr
|
||
|
= current_merge_points.begin();
|
||
|
mp_itr != current_merge_points.end(); ++mp_itr)
|
||
|
{
|
||
|
face_handles[*mp_itr].store_old_face_handles();
|
||
|
}
|
||
|
current_merge_points.clear();
|
||
|
}
|
||
|
|
||
|
void add_to_merge_points(vertex_t, graph::detail::no_old_handles) {}
|
||
|
|
||
|
void add_to_merge_points(vertex_t v, graph::detail::store_old_handles)
|
||
|
{
|
||
|
current_merge_points.push_back(v);
|
||
|
}
|
||
|
|
||
|
void add_to_embedded_edges(edge_t, graph::detail::no_old_handles) {}
|
||
|
|
||
|
void add_to_embedded_edges(edge_t e, graph::detail::store_old_handles)
|
||
|
{
|
||
|
embedded_edges.push_back(e);
|
||
|
}
|
||
|
|
||
|
void clean_up_embedding(graph::detail::no_embedding) {}
|
||
|
|
||
|
void clean_up_embedding(graph::detail::store_embedding)
|
||
|
{
|
||
|
|
||
|
// If the graph isn't biconnected, we'll still have entries
|
||
|
// in the separated_dfs_child_list for some vertices. Since
|
||
|
// these represent articulation points, we can obtain a
|
||
|
// planar embedding no matter what order we embed them in.
|
||
|
|
||
|
vertex_iterator_t xi, xi_end;
|
||
|
for (boost::tie(xi, xi_end) = vertices(g); xi != xi_end; ++xi)
|
||
|
{
|
||
|
if (!separated_dfs_child_list[*xi]->empty())
|
||
|
{
|
||
|
typename vertex_list_t::iterator yi, yi_end;
|
||
|
yi_end = separated_dfs_child_list[*xi]->end();
|
||
|
for (yi = separated_dfs_child_list[*xi]->begin(); yi != yi_end;
|
||
|
++yi)
|
||
|
{
|
||
|
dfs_child_handles[*yi].flip();
|
||
|
face_handles[*xi].glue_first_to_second(
|
||
|
dfs_child_handles[*yi]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Up until this point, we've flipped bicomps lazily by setting
|
||
|
// flipped[v] to true if the bicomp rooted at v was flipped (the
|
||
|
// lazy aspect of this flip is that all descendents of that vertex
|
||
|
// need to have their orientations reversed as well). Now, we
|
||
|
// traverse the DFS tree by DFS number and perform the actual
|
||
|
// flipping as needed
|
||
|
|
||
|
typedef typename vertex_vector_t::iterator vertex_vector_itr_t;
|
||
|
vertex_vector_itr_t vi_end = vertices_by_dfs_num.end();
|
||
|
for (vertex_vector_itr_t vi = vertices_by_dfs_num.begin(); vi != vi_end;
|
||
|
++vi)
|
||
|
{
|
||
|
vertex_t v(*vi);
|
||
|
bool v_flipped = flipped[v];
|
||
|
bool p_flipped = flipped[dfs_parent[v]];
|
||
|
if (v_flipped && !p_flipped)
|
||
|
{
|
||
|
face_handles[v].flip();
|
||
|
}
|
||
|
else if (p_flipped && !v_flipped)
|
||
|
{
|
||
|
face_handles[v].flip();
|
||
|
flipped[v] = true;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
flipped[v] = false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If there are any self-loops in the graph, they were flagged
|
||
|
// during the walkup, and we should add them to the embedding now.
|
||
|
// Adding a self loop anywhere in the embedding could never
|
||
|
// invalidate the embedding, but they would complicate the traversal
|
||
|
// if they were added during the walkup/walkdown.
|
||
|
|
||
|
typename edge_vector_t::iterator ei, ei_end;
|
||
|
ei_end = self_loops.end();
|
||
|
for (ei = self_loops.begin(); ei != ei_end; ++ei)
|
||
|
{
|
||
|
edge_t e(*ei);
|
||
|
face_handles[source(e, g)].push_second(e, g);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool pertinent(vertex_t w, vertex_t v)
|
||
|
{
|
||
|
// w is pertinent with respect to v if there is a backedge (v,w) or if
|
||
|
// w is the root of a bicomp that contains a pertinent vertex.
|
||
|
|
||
|
return backedge_flag[w] == dfs_number[v]
|
||
|
|| !pertinent_roots[w]->empty();
|
||
|
}
|
||
|
|
||
|
bool externally_active(vertex_t w, vertex_t v)
|
||
|
{
|
||
|
// Let a be any proper depth-first search ancestor of v. w is externally
|
||
|
// active with respect to v if there exists a backedge (a,w) or a
|
||
|
// backedge (a,w_0) for some w_0 in a descendent bicomp of w.
|
||
|
|
||
|
v_size_t dfs_number_of_v = dfs_number[v];
|
||
|
return (least_ancestor[w] < dfs_number_of_v)
|
||
|
|| (!separated_dfs_child_list[w]->empty()
|
||
|
&& low_point[separated_dfs_child_list[w]->front()]
|
||
|
< dfs_number_of_v);
|
||
|
}
|
||
|
|
||
|
bool internally_active(vertex_t w, vertex_t v)
|
||
|
{
|
||
|
return pertinent(w, v) && !externally_active(w, v);
|
||
|
}
|
||
|
|
||
|
void remove_vertex_from_separated_dfs_child_list(vertex_t v)
|
||
|
{
|
||
|
typename vertex_list_t::iterator to_delete
|
||
|
= separated_node_in_parent_list[v];
|
||
|
garbage.splice(garbage.end(), *separated_dfs_child_list[dfs_parent[v]],
|
||
|
to_delete, boost::next(to_delete));
|
||
|
}
|
||
|
|
||
|
// End of the implementation of the basic Boyer-Myrvold Algorithm. The rest
|
||
|
// of the code below implements the isolation of a Kuratowski subgraph in
|
||
|
// the case that the input graph is not planar. This is by far the most
|
||
|
// complicated part of the implementation.
|
||
|
|
||
|
public:
|
||
|
template < typename EdgeToBoolPropertyMap, typename EdgeContainer >
|
||
|
vertex_t kuratowski_walkup(vertex_t v, EdgeToBoolPropertyMap forbidden_edge,
|
||
|
EdgeToBoolPropertyMap goal_edge, EdgeToBoolPropertyMap is_embedded,
|
||
|
EdgeContainer& path_edges)
|
||
|
{
|
||
|
vertex_t current_endpoint;
|
||
|
bool seen_goal_edge = false;
|
||
|
out_edge_iterator_t oi, oi_end;
|
||
|
|
||
|
for (boost::tie(oi, oi_end) = out_edges(v, g); oi != oi_end; ++oi)
|
||
|
forbidden_edge[*oi] = true;
|
||
|
|
||
|
for (boost::tie(oi, oi_end) = out_edges(v, g); oi != oi_end; ++oi)
|
||
|
{
|
||
|
path_edges.clear();
|
||
|
|
||
|
edge_t e(*oi);
|
||
|
current_endpoint
|
||
|
= target(*oi, g) == v ? source(*oi, g) : target(*oi, g);
|
||
|
|
||
|
if (dfs_number[current_endpoint] < dfs_number[v] || is_embedded[e]
|
||
|
|| v == current_endpoint // self-loop
|
||
|
)
|
||
|
{
|
||
|
// Not a backedge
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
path_edges.push_back(e);
|
||
|
if (goal_edge[e])
|
||
|
{
|
||
|
return current_endpoint;
|
||
|
}
|
||
|
|
||
|
typedef typename face_edge_iterator<>::type walkup_itr_t;
|
||
|
|
||
|
walkup_itr_t walkup_itr(
|
||
|
current_endpoint, face_handles, first_side());
|
||
|
walkup_itr_t walkup_end;
|
||
|
|
||
|
seen_goal_edge = false;
|
||
|
|
||
|
while (true)
|
||
|
{
|
||
|
|
||
|
if (walkup_itr != walkup_end && forbidden_edge[*walkup_itr])
|
||
|
break;
|
||
|
|
||
|
while (walkup_itr != walkup_end && !goal_edge[*walkup_itr]
|
||
|
&& !forbidden_edge[*walkup_itr])
|
||
|
{
|
||
|
edge_t f(*walkup_itr);
|
||
|
forbidden_edge[f] = true;
|
||
|
path_edges.push_back(f);
|
||
|
current_endpoint = source(f, g) == current_endpoint
|
||
|
? target(f, g)
|
||
|
: source(f, g);
|
||
|
++walkup_itr;
|
||
|
}
|
||
|
|
||
|
if (walkup_itr != walkup_end && goal_edge[*walkup_itr])
|
||
|
{
|
||
|
path_edges.push_back(*walkup_itr);
|
||
|
seen_goal_edge = true;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
walkup_itr = walkup_itr_t(
|
||
|
current_endpoint, face_handles, first_side());
|
||
|
}
|
||
|
|
||
|
if (seen_goal_edge)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (seen_goal_edge)
|
||
|
return current_endpoint;
|
||
|
else
|
||
|
return graph_traits< Graph >::null_vertex();
|
||
|
}
|
||
|
|
||
|
template < typename OutputIterator, typename EdgeIndexMap >
|
||
|
void extract_kuratowski_subgraph(OutputIterator o_itr, EdgeIndexMap em)
|
||
|
{
|
||
|
|
||
|
// If the main algorithm has failed to embed one of the back-edges from
|
||
|
// a vertex v, we can use the current state of the algorithm to isolate
|
||
|
// a Kuratowksi subgraph. The isolation process breaks down into five
|
||
|
// cases, A - E. The general configuration of all five cases is shown in
|
||
|
// figure 1. There is a vertex v from which the planar
|
||
|
// v embedding process could not proceed. This means that
|
||
|
// | there exists some bicomp containing three vertices
|
||
|
// ----- x,y, and z as shown such that x and y are externally
|
||
|
// | | active with respect to v (which means that there are
|
||
|
// x y two vertices x_0 and y_0 such that (1) both x_0 and
|
||
|
// | | y_0 are proper depth-first search ancestors of v and
|
||
|
// --z-- (2) there are two disjoint paths, one connecting x
|
||
|
// and x_0 and one connecting y and y_0, both
|
||
|
// consisting
|
||
|
// fig. 1 entirely of unembedded edges). Furthermore, there
|
||
|
// exists a vertex z_0 such that z is a depth-first
|
||
|
// search ancestor of z_0 and (v,z_0) is an unembedded back-edge from v.
|
||
|
// x,y and z all exist on the same bicomp, which consists entirely of
|
||
|
// embedded edges. The five subcases break down as follows, and are
|
||
|
// handled by the algorithm logically in the order A-E: First, if v is
|
||
|
// not on the same bicomp as x,y, and z, a K_3_3 can be isolated - this
|
||
|
// is case A. So, we'll assume that v is on the same bicomp as x,y, and
|
||
|
// z. If z_0 is on a different bicomp than x,y, and z, a K_3_3 can also
|
||
|
// be isolated - this is a case B - so we'll assume from now on that v
|
||
|
// is on the same bicomp as x, y, and z=z_0. In this case, one can use
|
||
|
// properties of the Boyer-Myrvold algorithm to show the existence of an
|
||
|
// "x-y path" connecting some vertex on the "left side" of the x,y,z
|
||
|
// bicomp with some vertex on the "right side" of the bicomp (where the
|
||
|
// left and right are split by a line drawn through v and z.If either of
|
||
|
// the endpoints of the x-y path is above x or y on the bicomp, a K_3_3
|
||
|
// can be isolated - this is a case C. Otherwise, both endpoints are at
|
||
|
// or below x and y on the bicomp. If there is a vertex alpha on the x-y
|
||
|
// path such that alpha is not x or y and there's a path from alpha to v
|
||
|
// that's disjoint from any of the edges on the bicomp and the x-y path,
|
||
|
// a K_3_3 can be isolated - this is a case D. Otherwise, properties of
|
||
|
// the Boyer-Myrvold algorithm can be used to show that another vertex
|
||
|
// w exists on the lower half of the bicomp such that w is externally
|
||
|
// active with respect to v. w can then be used to isolate a K_5 - this
|
||
|
// is the configuration of case E.
|
||
|
|
||
|
vertex_iterator_t vi, vi_end;
|
||
|
edge_iterator_t ei, ei_end;
|
||
|
out_edge_iterator_t oei, oei_end;
|
||
|
typename std::vector< edge_t >::iterator xi, xi_end;
|
||
|
|
||
|
// Clear the short-circuit edges - these are needed for the planar
|
||
|
// testing/embedding algorithm to run in linear time, but they'll
|
||
|
// complicate the kuratowski subgraph isolation
|
||
|
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
|
||
|
{
|
||
|
face_handles[*vi].reset_vertex_cache();
|
||
|
dfs_child_handles[*vi].reset_vertex_cache();
|
||
|
}
|
||
|
|
||
|
vertex_t v = kuratowski_v;
|
||
|
vertex_t x = kuratowski_x;
|
||
|
vertex_t y = kuratowski_y;
|
||
|
|
||
|
typedef iterator_property_map< typename std::vector< bool >::iterator,
|
||
|
EdgeIndexMap >
|
||
|
edge_to_bool_map_t;
|
||
|
|
||
|
std::vector< bool > is_in_subgraph_vector(num_edges(g), false);
|
||
|
edge_to_bool_map_t is_in_subgraph(is_in_subgraph_vector.begin(), em);
|
||
|
|
||
|
std::vector< bool > is_embedded_vector(num_edges(g), false);
|
||
|
edge_to_bool_map_t is_embedded(is_embedded_vector.begin(), em);
|
||
|
|
||
|
typename std::vector< edge_t >::iterator embedded_itr, embedded_end;
|
||
|
embedded_end = embedded_edges.end();
|
||
|
for (embedded_itr = embedded_edges.begin();
|
||
|
embedded_itr != embedded_end; ++embedded_itr)
|
||
|
is_embedded[*embedded_itr] = true;
|
||
|
|
||
|
// upper_face_vertex is true for x,y, and all vertices above x and y in
|
||
|
// the bicomp
|
||
|
std::vector< bool > upper_face_vertex_vector(num_vertices(g), false);
|
||
|
vertex_to_bool_map_t upper_face_vertex(
|
||
|
upper_face_vertex_vector.begin(), vm);
|
||
|
|
||
|
std::vector< bool > lower_face_vertex_vector(num_vertices(g), false);
|
||
|
vertex_to_bool_map_t lower_face_vertex(
|
||
|
lower_face_vertex_vector.begin(), vm);
|
||
|
|
||
|
// These next few variable declarations are all things that we need
|
||
|
// to find.
|
||
|
vertex_t z = graph_traits< Graph >::null_vertex();
|
||
|
vertex_t bicomp_root;
|
||
|
vertex_t w = graph_traits< Graph >::null_vertex();
|
||
|
face_handle_t w_handle;
|
||
|
face_handle_t v_dfchild_handle;
|
||
|
vertex_t first_x_y_path_endpoint = graph_traits< Graph >::null_vertex();
|
||
|
vertex_t second_x_y_path_endpoint
|
||
|
= graph_traits< Graph >::null_vertex();
|
||
|
vertex_t w_ancestor = v;
|
||
|
|
||
|
detail::bm_case_t chosen_case = detail::BM_NO_CASE_CHOSEN;
|
||
|
|
||
|
std::vector< edge_t > x_external_path;
|
||
|
std::vector< edge_t > y_external_path;
|
||
|
std::vector< edge_t > case_d_edges;
|
||
|
|
||
|
std::vector< edge_t > z_v_path;
|
||
|
std::vector< edge_t > w_path;
|
||
|
|
||
|
// first, use a walkup to find a path from V that starts with a
|
||
|
// backedge from V, then goes up until it hits either X or Y
|
||
|
//(but doesn't find X or Y as the root of a bicomp)
|
||
|
|
||
|
typename face_vertex_iterator<>::type x_upper_itr(
|
||
|
x, face_handles, first_side());
|
||
|
typename face_vertex_iterator<>::type x_lower_itr(
|
||
|
x, face_handles, second_side());
|
||
|
typename face_vertex_iterator<>::type face_itr, face_end;
|
||
|
|
||
|
// Don't know which path from x is the upper or lower path -
|
||
|
// we'll find out here
|
||
|
for (face_itr = x_upper_itr; face_itr != face_end; ++face_itr)
|
||
|
{
|
||
|
if (*face_itr == y)
|
||
|
{
|
||
|
std::swap(x_upper_itr, x_lower_itr);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
upper_face_vertex[x] = true;
|
||
|
|
||
|
vertex_t current_vertex = x;
|
||
|
vertex_t previous_vertex;
|
||
|
for (face_itr = x_upper_itr; face_itr != face_end; ++face_itr)
|
||
|
{
|
||
|
previous_vertex = current_vertex;
|
||
|
current_vertex = *face_itr;
|
||
|
upper_face_vertex[current_vertex] = true;
|
||
|
}
|
||
|
|
||
|
v_dfchild_handle
|
||
|
= dfs_child_handles[canonical_dfs_child[previous_vertex]];
|
||
|
|
||
|
for (face_itr = x_lower_itr; *face_itr != y; ++face_itr)
|
||
|
{
|
||
|
vertex_t current_vertex(*face_itr);
|
||
|
lower_face_vertex[current_vertex] = true;
|
||
|
|
||
|
typename face_handle_list_t::iterator roots_itr, roots_end;
|
||
|
|
||
|
if (w == graph_traits< Graph >::null_vertex()) // haven't found a w
|
||
|
// yet
|
||
|
{
|
||
|
roots_end = pertinent_roots[current_vertex]->end();
|
||
|
for (roots_itr = pertinent_roots[current_vertex]->begin();
|
||
|
roots_itr != roots_end; ++roots_itr)
|
||
|
{
|
||
|
if (low_point
|
||
|
[canonical_dfs_child[roots_itr->first_vertex()]]
|
||
|
< dfs_number[v])
|
||
|
{
|
||
|
w = current_vertex;
|
||
|
w_handle = *roots_itr;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (; face_itr != face_end; ++face_itr)
|
||
|
{
|
||
|
vertex_t current_vertex(*face_itr);
|
||
|
upper_face_vertex[current_vertex] = true;
|
||
|
bicomp_root = current_vertex;
|
||
|
}
|
||
|
|
||
|
typedef typename face_edge_iterator<>::type walkup_itr_t;
|
||
|
|
||
|
std::vector< bool > outer_face_edge_vector(num_edges(g), false);
|
||
|
edge_to_bool_map_t outer_face_edge(outer_face_edge_vector.begin(), em);
|
||
|
|
||
|
walkup_itr_t walkup_end;
|
||
|
for (walkup_itr_t walkup_itr(x, face_handles, first_side());
|
||
|
walkup_itr != walkup_end; ++walkup_itr)
|
||
|
{
|
||
|
outer_face_edge[*walkup_itr] = true;
|
||
|
is_in_subgraph[*walkup_itr] = true;
|
||
|
}
|
||
|
|
||
|
for (walkup_itr_t walkup_itr(x, face_handles, second_side());
|
||
|
walkup_itr != walkup_end; ++walkup_itr)
|
||
|
{
|
||
|
outer_face_edge[*walkup_itr] = true;
|
||
|
is_in_subgraph[*walkup_itr] = true;
|
||
|
}
|
||
|
|
||
|
std::vector< bool > forbidden_edge_vector(num_edges(g), false);
|
||
|
edge_to_bool_map_t forbidden_edge(forbidden_edge_vector.begin(), em);
|
||
|
|
||
|
std::vector< bool > goal_edge_vector(num_edges(g), false);
|
||
|
edge_to_bool_map_t goal_edge(goal_edge_vector.begin(), em);
|
||
|
|
||
|
// Find external path to x and to y
|
||
|
|
||
|
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
|
||
|
{
|
||
|
edge_t e(*ei);
|
||
|
goal_edge[e] = !outer_face_edge[e]
|
||
|
&& (source(e, g) == x || target(e, g) == x);
|
||
|
forbidden_edge[*ei] = outer_face_edge[*ei];
|
||
|
}
|
||
|
|
||
|
vertex_t x_ancestor = v;
|
||
|
vertex_t x_endpoint = graph_traits< Graph >::null_vertex();
|
||
|
|
||
|
while (x_endpoint == graph_traits< Graph >::null_vertex())
|
||
|
{
|
||
|
x_ancestor = dfs_parent[x_ancestor];
|
||
|
x_endpoint = kuratowski_walkup(x_ancestor, forbidden_edge,
|
||
|
goal_edge, is_embedded, x_external_path);
|
||
|
}
|
||
|
|
||
|
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
|
||
|
{
|
||
|
edge_t e(*ei);
|
||
|
goal_edge[e] = !outer_face_edge[e]
|
||
|
&& (source(e, g) == y || target(e, g) == y);
|
||
|
forbidden_edge[*ei] = outer_face_edge[*ei];
|
||
|
}
|
||
|
|
||
|
vertex_t y_ancestor = v;
|
||
|
vertex_t y_endpoint = graph_traits< Graph >::null_vertex();
|
||
|
|
||
|
while (y_endpoint == graph_traits< Graph >::null_vertex())
|
||
|
{
|
||
|
y_ancestor = dfs_parent[y_ancestor];
|
||
|
y_endpoint = kuratowski_walkup(y_ancestor, forbidden_edge,
|
||
|
goal_edge, is_embedded, y_external_path);
|
||
|
}
|
||
|
|
||
|
vertex_t parent, child;
|
||
|
|
||
|
// If v isn't on the same bicomp as x and y, it's a case A
|
||
|
if (bicomp_root != v)
|
||
|
{
|
||
|
chosen_case = detail::BM_CASE_A;
|
||
|
|
||
|
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
|
||
|
if (lower_face_vertex[*vi])
|
||
|
for (boost::tie(oei, oei_end) = out_edges(*vi, g);
|
||
|
oei != oei_end; ++oei)
|
||
|
if (!outer_face_edge[*oei])
|
||
|
goal_edge[*oei] = true;
|
||
|
|
||
|
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
|
||
|
forbidden_edge[*ei] = outer_face_edge[*ei];
|
||
|
|
||
|
z = kuratowski_walkup(
|
||
|
v, forbidden_edge, goal_edge, is_embedded, z_v_path);
|
||
|
}
|
||
|
else if (w != graph_traits< Graph >::null_vertex())
|
||
|
{
|
||
|
chosen_case = detail::BM_CASE_B;
|
||
|
|
||
|
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
|
||
|
{
|
||
|
edge_t e(*ei);
|
||
|
goal_edge[e] = false;
|
||
|
forbidden_edge[e] = outer_face_edge[e];
|
||
|
}
|
||
|
|
||
|
goal_edge[w_handle.first_edge()] = true;
|
||
|
goal_edge[w_handle.second_edge()] = true;
|
||
|
|
||
|
z = kuratowski_walkup(
|
||
|
v, forbidden_edge, goal_edge, is_embedded, z_v_path);
|
||
|
|
||
|
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
|
||
|
{
|
||
|
forbidden_edge[*ei] = outer_face_edge[*ei];
|
||
|
}
|
||
|
|
||
|
typename std::vector< edge_t >::iterator pi, pi_end;
|
||
|
pi_end = z_v_path.end();
|
||
|
for (pi = z_v_path.begin(); pi != pi_end; ++pi)
|
||
|
{
|
||
|
goal_edge[*pi] = true;
|
||
|
}
|
||
|
|
||
|
w_ancestor = v;
|
||
|
vertex_t w_endpoint = graph_traits< Graph >::null_vertex();
|
||
|
|
||
|
while (w_endpoint == graph_traits< Graph >::null_vertex())
|
||
|
{
|
||
|
w_ancestor = dfs_parent[w_ancestor];
|
||
|
w_endpoint = kuratowski_walkup(
|
||
|
w_ancestor, forbidden_edge, goal_edge, is_embedded, w_path);
|
||
|
}
|
||
|
|
||
|
// We really want both the w walkup and the z walkup to finish on
|
||
|
// exactly the same edge, but for convenience (since we don't have
|
||
|
// control over which side of a bicomp a walkup moves up) we've
|
||
|
// defined the walkup to either end at w_handle.first_edge() or
|
||
|
// w_handle.second_edge(). If both walkups ended at different edges,
|
||
|
// we'll do a little surgery on the w walkup path to make it follow
|
||
|
// the other side of the final bicomp.
|
||
|
|
||
|
if ((w_path.back() == w_handle.first_edge()
|
||
|
&& z_v_path.back() == w_handle.second_edge())
|
||
|
|| (w_path.back() == w_handle.second_edge()
|
||
|
&& z_v_path.back() == w_handle.first_edge()))
|
||
|
{
|
||
|
walkup_itr_t wi, wi_end;
|
||
|
edge_t final_edge = w_path.back();
|
||
|
vertex_t anchor = source(final_edge, g) == w_handle.get_anchor()
|
||
|
? target(final_edge, g)
|
||
|
: source(final_edge, g);
|
||
|
if (face_handles[anchor].first_edge() == final_edge)
|
||
|
wi = walkup_itr_t(anchor, face_handles, second_side());
|
||
|
else
|
||
|
wi = walkup_itr_t(anchor, face_handles, first_side());
|
||
|
|
||
|
w_path.pop_back();
|
||
|
|
||
|
for (; wi != wi_end; ++wi)
|
||
|
{
|
||
|
edge_t e(*wi);
|
||
|
if (w_path.back() == e)
|
||
|
w_path.pop_back();
|
||
|
else
|
||
|
w_path.push_back(e);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
|
||
|
// We need to find a valid z, since the x-y path re-defines the
|
||
|
// lower face, and the z we found earlier may now be on the upper
|
||
|
// face.
|
||
|
|
||
|
chosen_case = detail::BM_CASE_E;
|
||
|
|
||
|
// The z we've used so far is just an externally active vertex on
|
||
|
// the lower face path, but may not be the z we need for a case C,
|
||
|
// D, or E subgraph. the z we need now is any externally active
|
||
|
// vertex on the lower face path with both old_face_handles edges on
|
||
|
// the outer face. Since we know an x-y path exists, such a z must
|
||
|
// also exist.
|
||
|
|
||
|
// TODO: find this z in the first place.
|
||
|
|
||
|
// find the new z
|
||
|
|
||
|
for (face_itr = x_lower_itr; *face_itr != y; ++face_itr)
|
||
|
{
|
||
|
vertex_t possible_z(*face_itr);
|
||
|
if (pertinent(possible_z, v)
|
||
|
&& outer_face_edge[face_handles[possible_z]
|
||
|
.old_first_edge()]
|
||
|
&& outer_face_edge[face_handles[possible_z]
|
||
|
.old_second_edge()])
|
||
|
{
|
||
|
z = possible_z;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// find x-y path, and a w if one exists.
|
||
|
|
||
|
if (externally_active(z, v))
|
||
|
w = z;
|
||
|
|
||
|
typedef typename face_edge_iterator< single_side,
|
||
|
previous_iteration >::type old_face_iterator_t;
|
||
|
|
||
|
old_face_iterator_t first_old_face_itr(
|
||
|
z, face_handles, first_side());
|
||
|
old_face_iterator_t second_old_face_itr(
|
||
|
z, face_handles, second_side());
|
||
|
old_face_iterator_t old_face_itr, old_face_end;
|
||
|
|
||
|
std::vector< old_face_iterator_t > old_face_iterators;
|
||
|
old_face_iterators.push_back(first_old_face_itr);
|
||
|
old_face_iterators.push_back(second_old_face_itr);
|
||
|
|
||
|
std::vector< bool > x_y_path_vertex_vector(num_vertices(g), false);
|
||
|
vertex_to_bool_map_t x_y_path_vertex(
|
||
|
x_y_path_vertex_vector.begin(), vm);
|
||
|
|
||
|
typename std::vector< old_face_iterator_t >::iterator of_itr,
|
||
|
of_itr_end;
|
||
|
of_itr_end = old_face_iterators.end();
|
||
|
for (of_itr = old_face_iterators.begin(); of_itr != of_itr_end;
|
||
|
++of_itr)
|
||
|
{
|
||
|
|
||
|
old_face_itr = *of_itr;
|
||
|
|
||
|
vertex_t previous_vertex;
|
||
|
bool seen_x_or_y = false;
|
||
|
vertex_t current_vertex = z;
|
||
|
for (; old_face_itr != old_face_end; ++old_face_itr)
|
||
|
{
|
||
|
edge_t e(*old_face_itr);
|
||
|
previous_vertex = current_vertex;
|
||
|
current_vertex = source(e, g) == current_vertex
|
||
|
? target(e, g)
|
||
|
: source(e, g);
|
||
|
|
||
|
if (current_vertex == x || current_vertex == y)
|
||
|
seen_x_or_y = true;
|
||
|
|
||
|
if (w == graph_traits< Graph >::null_vertex()
|
||
|
&& externally_active(current_vertex, v)
|
||
|
&& outer_face_edge[e]
|
||
|
&& outer_face_edge[*boost::next(old_face_itr)]
|
||
|
&& !seen_x_or_y)
|
||
|
{
|
||
|
w = current_vertex;
|
||
|
}
|
||
|
|
||
|
if (!outer_face_edge[e])
|
||
|
{
|
||
|
if (!upper_face_vertex[current_vertex]
|
||
|
&& !lower_face_vertex[current_vertex])
|
||
|
{
|
||
|
x_y_path_vertex[current_vertex] = true;
|
||
|
}
|
||
|
|
||
|
is_in_subgraph[e] = true;
|
||
|
if (upper_face_vertex[source(e, g)]
|
||
|
|| lower_face_vertex[source(e, g)])
|
||
|
{
|
||
|
if (first_x_y_path_endpoint
|
||
|
== graph_traits< Graph >::null_vertex())
|
||
|
first_x_y_path_endpoint = source(e, g);
|
||
|
else
|
||
|
second_x_y_path_endpoint = source(e, g);
|
||
|
}
|
||
|
if (upper_face_vertex[target(e, g)]
|
||
|
|| lower_face_vertex[target(e, g)])
|
||
|
{
|
||
|
if (first_x_y_path_endpoint
|
||
|
== graph_traits< Graph >::null_vertex())
|
||
|
first_x_y_path_endpoint = target(e, g);
|
||
|
else
|
||
|
second_x_y_path_endpoint = target(e, g);
|
||
|
}
|
||
|
}
|
||
|
else if (previous_vertex == x || previous_vertex == y)
|
||
|
{
|
||
|
chosen_case = detail::BM_CASE_C;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Look for a case D - one of v's embedded edges will connect to the
|
||
|
// x-y path along an inner face path.
|
||
|
|
||
|
// First, get a list of all of v's embedded child edges
|
||
|
|
||
|
out_edge_iterator_t v_edge_itr, v_edge_end;
|
||
|
for (boost::tie(v_edge_itr, v_edge_end) = out_edges(v, g);
|
||
|
v_edge_itr != v_edge_end; ++v_edge_itr)
|
||
|
{
|
||
|
edge_t embedded_edge(*v_edge_itr);
|
||
|
|
||
|
if (!is_embedded[embedded_edge]
|
||
|
|| embedded_edge == dfs_parent_edge[v])
|
||
|
continue;
|
||
|
|
||
|
case_d_edges.push_back(embedded_edge);
|
||
|
|
||
|
vertex_t current_vertex = source(embedded_edge, g) == v
|
||
|
? target(embedded_edge, g)
|
||
|
: source(embedded_edge, g);
|
||
|
|
||
|
typename face_edge_iterator<>::type internal_face_itr,
|
||
|
internal_face_end;
|
||
|
if (face_handles[current_vertex].first_vertex() == v)
|
||
|
{
|
||
|
internal_face_itr = typename face_edge_iterator<>::type(
|
||
|
current_vertex, face_handles, second_side());
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
internal_face_itr = typename face_edge_iterator<>::type(
|
||
|
current_vertex, face_handles, first_side());
|
||
|
}
|
||
|
|
||
|
while (internal_face_itr != internal_face_end
|
||
|
&& !outer_face_edge[*internal_face_itr]
|
||
|
&& !x_y_path_vertex[current_vertex])
|
||
|
{
|
||
|
edge_t e(*internal_face_itr);
|
||
|
case_d_edges.push_back(e);
|
||
|
current_vertex = source(e, g) == current_vertex
|
||
|
? target(e, g)
|
||
|
: source(e, g);
|
||
|
++internal_face_itr;
|
||
|
}
|
||
|
|
||
|
if (x_y_path_vertex[current_vertex])
|
||
|
{
|
||
|
chosen_case = detail::BM_CASE_D;
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
case_d_edges.clear();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (chosen_case != detail::BM_CASE_B
|
||
|
&& chosen_case != detail::BM_CASE_A)
|
||
|
{
|
||
|
|
||
|
// Finding z and w.
|
||
|
|
||
|
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
|
||
|
{
|
||
|
edge_t e(*ei);
|
||
|
goal_edge[e] = !outer_face_edge[e]
|
||
|
&& (source(e, g) == z || target(e, g) == z);
|
||
|
forbidden_edge[e] = outer_face_edge[e];
|
||
|
}
|
||
|
|
||
|
kuratowski_walkup(
|
||
|
v, forbidden_edge, goal_edge, is_embedded, z_v_path);
|
||
|
|
||
|
if (chosen_case == detail::BM_CASE_E)
|
||
|
{
|
||
|
|
||
|
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
|
||
|
{
|
||
|
forbidden_edge[*ei] = outer_face_edge[*ei];
|
||
|
goal_edge[*ei] = !outer_face_edge[*ei]
|
||
|
&& (source(*ei, g) == w || target(*ei, g) == w);
|
||
|
}
|
||
|
|
||
|
for (boost::tie(oei, oei_end) = out_edges(w, g); oei != oei_end;
|
||
|
++oei)
|
||
|
{
|
||
|
if (!outer_face_edge[*oei])
|
||
|
goal_edge[*oei] = true;
|
||
|
}
|
||
|
|
||
|
typename std::vector< edge_t >::iterator pi, pi_end;
|
||
|
pi_end = z_v_path.end();
|
||
|
for (pi = z_v_path.begin(); pi != pi_end; ++pi)
|
||
|
{
|
||
|
goal_edge[*pi] = true;
|
||
|
}
|
||
|
|
||
|
w_ancestor = v;
|
||
|
vertex_t w_endpoint = graph_traits< Graph >::null_vertex();
|
||
|
|
||
|
while (w_endpoint == graph_traits< Graph >::null_vertex())
|
||
|
{
|
||
|
w_ancestor = dfs_parent[w_ancestor];
|
||
|
w_endpoint = kuratowski_walkup(w_ancestor, forbidden_edge,
|
||
|
goal_edge, is_embedded, w_path);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// We're done isolating the Kuratowski subgraph at this point -
|
||
|
// but there's still some cleaning up to do.
|
||
|
|
||
|
// Update is_in_subgraph with the paths we just found
|
||
|
|
||
|
xi_end = x_external_path.end();
|
||
|
for (xi = x_external_path.begin(); xi != xi_end; ++xi)
|
||
|
is_in_subgraph[*xi] = true;
|
||
|
|
||
|
xi_end = y_external_path.end();
|
||
|
for (xi = y_external_path.begin(); xi != xi_end; ++xi)
|
||
|
is_in_subgraph[*xi] = true;
|
||
|
|
||
|
xi_end = z_v_path.end();
|
||
|
for (xi = z_v_path.begin(); xi != xi_end; ++xi)
|
||
|
is_in_subgraph[*xi] = true;
|
||
|
|
||
|
xi_end = case_d_edges.end();
|
||
|
for (xi = case_d_edges.begin(); xi != xi_end; ++xi)
|
||
|
is_in_subgraph[*xi] = true;
|
||
|
|
||
|
xi_end = w_path.end();
|
||
|
for (xi = w_path.begin(); xi != xi_end; ++xi)
|
||
|
is_in_subgraph[*xi] = true;
|
||
|
|
||
|
child = bicomp_root;
|
||
|
parent = dfs_parent[child];
|
||
|
while (child != parent)
|
||
|
{
|
||
|
is_in_subgraph[dfs_parent_edge[child]] = true;
|
||
|
boost::tie(parent, child)
|
||
|
= std::make_pair(dfs_parent[parent], parent);
|
||
|
}
|
||
|
|
||
|
// At this point, we've already isolated the Kuratowski subgraph and
|
||
|
// collected all of the edges that compose it in the is_in_subgraph
|
||
|
// property map. But we want the verification of such a subgraph to be
|
||
|
// a deterministic process, and we can simplify the function
|
||
|
// is_kuratowski_subgraph by cleaning up some edges here.
|
||
|
|
||
|
if (chosen_case == detail::BM_CASE_B)
|
||
|
{
|
||
|
is_in_subgraph[dfs_parent_edge[v]] = false;
|
||
|
}
|
||
|
else if (chosen_case == detail::BM_CASE_C)
|
||
|
{
|
||
|
// In a case C subgraph, at least one of the x-y path endpoints
|
||
|
// (call it alpha) is above either x or y on the outer face. The
|
||
|
// other endpoint may be attached at x or y OR above OR below. In
|
||
|
// any of these three cases, we can form a K_3_3 by removing the
|
||
|
// edge attached to v on the outer face that is NOT on the path to
|
||
|
// alpha.
|
||
|
|
||
|
typename face_vertex_iterator< single_side, follow_visitor >::type
|
||
|
face_itr,
|
||
|
face_end;
|
||
|
if (face_handles[v_dfchild_handle.first_vertex()].first_edge()
|
||
|
== v_dfchild_handle.first_edge())
|
||
|
{
|
||
|
face_itr = typename face_vertex_iterator< single_side,
|
||
|
follow_visitor >::type(v_dfchild_handle.first_vertex(),
|
||
|
face_handles, second_side());
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
face_itr = typename face_vertex_iterator< single_side,
|
||
|
follow_visitor >::type(v_dfchild_handle.first_vertex(),
|
||
|
face_handles, first_side());
|
||
|
}
|
||
|
|
||
|
for (; true; ++face_itr)
|
||
|
{
|
||
|
vertex_t current_vertex(*face_itr);
|
||
|
if (current_vertex == x || current_vertex == y)
|
||
|
{
|
||
|
is_in_subgraph[v_dfchild_handle.first_edge()] = false;
|
||
|
break;
|
||
|
}
|
||
|
else if (current_vertex == first_x_y_path_endpoint
|
||
|
|| current_vertex == second_x_y_path_endpoint)
|
||
|
{
|
||
|
is_in_subgraph[v_dfchild_handle.second_edge()] = false;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else if (chosen_case == detail::BM_CASE_D)
|
||
|
{
|
||
|
// Need to remove both of the edges adjacent to v on the outer face.
|
||
|
// remove the connecting edges from v to bicomp, then
|
||
|
// is_kuratowski_subgraph will shrink vertices of degree 1
|
||
|
// automatically...
|
||
|
|
||
|
is_in_subgraph[v_dfchild_handle.first_edge()] = false;
|
||
|
is_in_subgraph[v_dfchild_handle.second_edge()] = false;
|
||
|
}
|
||
|
else if (chosen_case == detail::BM_CASE_E)
|
||
|
{
|
||
|
// Similarly to case C, if the endpoints of the x-y path are both
|
||
|
// below x and y, we should remove an edge to allow the subgraph to
|
||
|
// contract to a K_3_3.
|
||
|
|
||
|
if ((first_x_y_path_endpoint != x && first_x_y_path_endpoint != y)
|
||
|
|| (second_x_y_path_endpoint != x
|
||
|
&& second_x_y_path_endpoint != y))
|
||
|
{
|
||
|
is_in_subgraph[dfs_parent_edge[v]] = false;
|
||
|
|
||
|
vertex_t deletion_endpoint, other_endpoint;
|
||
|
if (lower_face_vertex[first_x_y_path_endpoint])
|
||
|
{
|
||
|
deletion_endpoint = second_x_y_path_endpoint;
|
||
|
other_endpoint = first_x_y_path_endpoint;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
deletion_endpoint = first_x_y_path_endpoint;
|
||
|
other_endpoint = second_x_y_path_endpoint;
|
||
|
}
|
||
|
|
||
|
typename face_edge_iterator<>::type face_itr, face_end;
|
||
|
|
||
|
bool found_other_endpoint = false;
|
||
|
for (face_itr = typename face_edge_iterator<>::type(
|
||
|
deletion_endpoint, face_handles, first_side());
|
||
|
face_itr != face_end; ++face_itr)
|
||
|
{
|
||
|
edge_t e(*face_itr);
|
||
|
if (source(e, g) == other_endpoint
|
||
|
|| target(e, g) == other_endpoint)
|
||
|
{
|
||
|
found_other_endpoint = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (found_other_endpoint)
|
||
|
{
|
||
|
is_in_subgraph[face_handles[deletion_endpoint].first_edge()]
|
||
|
= false;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
is_in_subgraph[face_handles[deletion_endpoint]
|
||
|
.second_edge()]
|
||
|
= false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
|
||
|
if (is_in_subgraph[*ei])
|
||
|
*o_itr = *ei;
|
||
|
}
|
||
|
|
||
|
template < typename EdgePermutation >
|
||
|
void make_edge_permutation(EdgePermutation perm)
|
||
|
{
|
||
|
vertex_iterator_t vi, vi_end;
|
||
|
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
|
||
|
{
|
||
|
vertex_t v(*vi);
|
||
|
perm[v].clear();
|
||
|
face_handles[v].get_list(std::back_inserter(perm[v]));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
const Graph& g;
|
||
|
VertexIndexMap vm;
|
||
|
|
||
|
vertex_t kuratowski_v;
|
||
|
vertex_t kuratowski_x;
|
||
|
vertex_t kuratowski_y;
|
||
|
|
||
|
vertex_list_t garbage; // we delete items from linked lists by
|
||
|
// splicing them into garbage
|
||
|
|
||
|
// only need these two for kuratowski subgraph isolation
|
||
|
std::vector< vertex_t > current_merge_points;
|
||
|
std::vector< edge_t > embedded_edges;
|
||
|
|
||
|
// property map storage
|
||
|
std::vector< v_size_t > low_point_vector;
|
||
|
std::vector< vertex_t > dfs_parent_vector;
|
||
|
std::vector< v_size_t > dfs_number_vector;
|
||
|
std::vector< v_size_t > least_ancestor_vector;
|
||
|
std::vector< face_handle_list_ptr_t > pertinent_roots_vector;
|
||
|
std::vector< v_size_t > backedge_flag_vector;
|
||
|
std::vector< v_size_t > visited_vector;
|
||
|
std::vector< face_handle_t > face_handles_vector;
|
||
|
std::vector< face_handle_t > dfs_child_handles_vector;
|
||
|
std::vector< vertex_list_ptr_t > separated_dfs_child_list_vector;
|
||
|
std::vector< typename vertex_list_t::iterator >
|
||
|
separated_node_in_parent_list_vector;
|
||
|
std::vector< vertex_t > canonical_dfs_child_vector;
|
||
|
std::vector< bool > flipped_vector;
|
||
|
std::vector< edge_vector_t > backedges_vector;
|
||
|
edge_vector_t self_loops;
|
||
|
std::vector< edge_t > dfs_parent_edge_vector;
|
||
|
vertex_vector_t vertices_by_dfs_num;
|
||
|
|
||
|
// property maps
|
||
|
vertex_to_v_size_map_t low_point;
|
||
|
vertex_to_vertex_map_t dfs_parent;
|
||
|
vertex_to_v_size_map_t dfs_number;
|
||
|
vertex_to_v_size_map_t least_ancestor;
|
||
|
vertex_to_face_handle_list_ptr_map_t pertinent_roots;
|
||
|
vertex_to_v_size_map_t backedge_flag;
|
||
|
vertex_to_v_size_map_t visited;
|
||
|
vertex_to_face_handle_map_t face_handles;
|
||
|
vertex_to_face_handle_map_t dfs_child_handles;
|
||
|
vertex_to_vertex_list_ptr_map_t separated_dfs_child_list;
|
||
|
vertex_to_separated_node_map_t separated_node_in_parent_list;
|
||
|
vertex_to_vertex_map_t canonical_dfs_child;
|
||
|
vertex_to_bool_map_t flipped;
|
||
|
vertex_to_edge_vector_map_t backedges;
|
||
|
vertex_to_edge_map_t dfs_parent_edge; // only need for kuratowski
|
||
|
|
||
|
merge_stack_t merge_stack;
|
||
|
};
|
||
|
|
||
|
} // namespace boost
|
||
|
|
||
|
#endif //__BOYER_MYRVOLD_IMPL_HPP__
|