libcarla/include/system/boost/geometry/formulas/vertex_longitude.hpp

353 lines
10 KiB
C++
Raw Permalink Normal View History

2024-10-18 13:19:59 +08:00
// Boost.Geometry
// Copyright (c) 2016-2020 Oracle and/or its affiliates.
// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_FORMULAS_MAXIMUM_LONGITUDE_HPP
#define BOOST_GEOMETRY_FORMULAS_MAXIMUM_LONGITUDE_HPP
#include <boost/geometry/core/static_assert.hpp>
#include <boost/geometry/formulas/spherical.hpp>
#include <boost/geometry/formulas/flattening.hpp>
#include <boost/math/special_functions/hypot.hpp>
namespace boost { namespace geometry { namespace formula
{
/*!
\brief Algorithm to compute the vertex longitude of a geodesic segment. Vertex is
a point on the geodesic that maximizes (or minimizes) the latitude. The algorithm
is given the vertex latitude.
*/
//Classes for spesific CS
template <typename CT>
class vertex_longitude_on_sphere
{
public:
template <typename T>
static inline CT apply(T const& lat1, //segment point 1
T const& lat2, //segment point 2
T const& lat3, //vertex latitude
T const& sin_l12,
T const& cos_l12) //lon1 -lon2
{
//https://en.wikipedia.org/wiki/Great-circle_navigation#Finding_way-points
CT const A = sin(lat1) * cos(lat2) * cos(lat3) * sin_l12;
CT const B = sin(lat1) * cos(lat2) * cos(lat3) * cos_l12
- cos(lat1) * sin(lat2) * cos(lat3);
CT lon = atan2(B, A);
return lon + math::pi<CT>();
}
};
template <typename CT>
class vertex_longitude_on_spheroid
{
template<typename T>
static inline void normalize(T& x, T& y)
{
T h = boost::math::hypot(x, y);
x /= h;
y /= h;
}
public:
template <typename T, typename Spheroid>
static inline CT apply(T const& lat1, //segment point 1
T const& lat2, //segment point 2
T const& lat3, //vertex latitude
T& alp1,
Spheroid const& spheroid)
{
// We assume that segment points lay on different side w.r.t.
// the vertex
// Constants
CT const c0 = 0;
CT const c2 = 2;
CT const half_pi = math::pi<CT>() / c2;
if (math::equals(lat1, half_pi)
|| math::equals(lat2, half_pi)
|| math::equals(lat1, -half_pi)
|| math::equals(lat2, -half_pi))
{
// one segment point is the pole
return c0;
}
// More constants
CT const f = flattening<CT>(spheroid);
CT const pi = math::pi<CT>();
CT const c1 = 1;
CT const cminus1 = -1;
// First, compute longitude on auxiliary sphere
CT const one_minus_f = c1 - f;
CT const bet1 = atan(one_minus_f * tan(lat1));
CT const bet2 = atan(one_minus_f * tan(lat2));
CT const bet3 = atan(one_minus_f * tan(lat3));
CT cos_bet1 = cos(bet1);
CT cos_bet2 = cos(bet2);
CT const sin_bet1 = sin(bet1);
CT const sin_bet2 = sin(bet2);
CT const sin_bet3 = sin(bet3);
CT omg12 = 0;
if (bet1 < c0)
{
cos_bet1 *= cminus1;
omg12 += pi;
}
if (bet2 < c0)
{
cos_bet2 *= cminus1;
omg12 += pi;
}
CT const sin_alp1 = sin(alp1);
CT const cos_alp1 = math::sqrt(c1 - math::sqr(sin_alp1));
CT const norm = math::sqrt(math::sqr(cos_alp1) + math::sqr(sin_alp1 * sin_bet1));
CT const sin_alp0 = sin(atan2(sin_alp1 * cos_bet1, norm));
BOOST_ASSERT(cos_bet2 != c0);
CT const sin_alp2 = sin_alp1 * cos_bet1 / cos_bet2;
CT const cos_alp0 = math::sqrt(c1 - math::sqr(sin_alp0));
CT const cos_alp2 = math::sqrt(c1 - math::sqr(sin_alp2));
CT const sig1 = atan2(sin_bet1, cos_alp1 * cos_bet1);
CT const sig2 = atan2(sin_bet2, -cos_alp2 * cos_bet2); //lat3 is a vertex
CT const cos_sig1 = cos(sig1);
CT const sin_sig1 = math::sqrt(c1 - math::sqr(cos_sig1));
CT const cos_sig2 = cos(sig2);
CT const sin_sig2 = math::sqrt(c1 - math::sqr(cos_sig2));
CT const omg1 = atan2(sin_alp0 * sin_sig1, cos_sig1);
CT const omg2 = atan2(sin_alp0 * sin_sig2, cos_sig2);
omg12 += omg1 - omg2;
CT const sin_omg12 = sin(omg12);
CT const cos_omg12 = cos(omg12);
CT omg13 = geometry::formula::vertex_longitude_on_sphere<CT>
::apply(bet1, bet2, bet3, sin_omg12, cos_omg12);
if (lat1 * lat2 < c0)//different hemispheres
{
if ((lat2 - lat1) * lat3 > c0)// ascending segment
{
omg13 = pi - omg13;
}
}
// Second, compute the ellipsoidal longitude
CT const e2 = f * (c2 - f);
CT const ep = math::sqrt(e2 / (c1 - e2));
CT const k2 = math::sqr(ep * cos_alp0);
CT const sqrt_k2_plus_one = math::sqrt(c1 + k2);
CT const eps = (sqrt_k2_plus_one - c1) / (sqrt_k2_plus_one + c1);
CT const eps2 = eps * eps;
CT const n = f / (c2 - f);
// sig3 is the length from equator to the vertex
CT sig3;
if(sin_bet3 > c0)
{
sig3 = half_pi;
} else {
sig3 = -half_pi;
}
CT const cos_sig3 = 0;
CT const sin_sig3 = 1;
CT sig13 = sig3 - sig1;
if (sig13 > pi)
{
sig13 -= 2 * pi;
}
// Order 2 approximation
CT const c1over2 = 0.5;
CT const c1over4 = 0.25;
CT const c1over8 = 0.125;
CT const c1over16 = 0.0625;
CT const c4 = 4;
CT const c8 = 8;
CT const A3 = 1 - (c1over2 - c1over2 * n) * eps - c1over4 * eps2;
CT const C31 = (c1over4 - c1over4 * n) * eps + c1over8 * eps2;
CT const C32 = c1over16 * eps2;
CT const sin2_sig3 = c2 * cos_sig3 * sin_sig3;
CT const sin4_sig3 = sin_sig3 * (-c4 * cos_sig3
+ c8 * cos_sig3 * cos_sig3 * cos_sig3);
CT const sin2_sig1 = c2 * cos_sig1 * sin_sig1;
CT const sin4_sig1 = sin_sig1 * (-c4 * cos_sig1
+ c8 * cos_sig1 * cos_sig1 * cos_sig1);
CT const I3 = A3 * (sig13
+ C31 * (sin2_sig3 - sin2_sig1)
+ C32 * (sin4_sig3 - sin4_sig1));
CT const sign = bet3 >= c0
? c1
: cminus1;
CT const dlon_max = omg13 - sign * f * sin_alp0 * I3;
return dlon_max;
}
};
//CS_tag dispatching
template <typename CT, typename CS_Tag>
struct compute_vertex_lon
{
BOOST_GEOMETRY_STATIC_ASSERT_FALSE(
"Not implemented for this coordinate system.",
CT, CS_Tag);
};
template <typename CT>
struct compute_vertex_lon<CT, spherical_equatorial_tag>
{
template <typename Strategy>
static inline CT apply(CT const& lat1,
CT const& lat2,
CT const& vertex_lat,
CT const& sin_l12,
CT const& cos_l12,
CT,
Strategy)
{
return vertex_longitude_on_sphere<CT>
::apply(lat1,
lat2,
vertex_lat,
sin_l12,
cos_l12);
}
};
template <typename CT>
struct compute_vertex_lon<CT, geographic_tag>
{
template <typename Strategy>
static inline CT apply(CT const& lat1,
CT const& lat2,
CT const& vertex_lat,
CT,
CT,
CT& alp1,
Strategy const& azimuth_strategy)
{
return vertex_longitude_on_spheroid<CT>
::apply(lat1,
lat2,
vertex_lat,
alp1,
azimuth_strategy.model());
}
};
// Vertex longitude interface
// Assume that lon1 < lon2 and vertex_lat is the latitude of the vertex
template <typename CT, typename CS_Tag>
class vertex_longitude
{
public :
template <typename Strategy>
static inline CT apply(CT& lon1,
CT& lat1,
CT& lon2,
CT& lat2,
CT const& vertex_lat,
CT& alp1,
Strategy const& azimuth_strategy)
{
CT const c0 = 0;
CT pi = math::pi<CT>();
//Vertex is a segment's point
if (math::equals(vertex_lat, lat1))
{
return lon1;
}
if (math::equals(vertex_lat, lat2))
{
return lon2;
}
//Segment lay on meridian
if (math::equals(lon1, lon2))
{
return (std::max)(lat1, lat2);
}
BOOST_ASSERT(lon1 < lon2);
CT dlon = compute_vertex_lon<CT, CS_Tag>::apply(lat1, lat2,
vertex_lat,
sin(lon1 - lon2),
cos(lon1 - lon2),
alp1,
azimuth_strategy);
CT vertex_lon = std::fmod(lon1 + dlon, 2 * pi);
if (vertex_lat < c0)
{
vertex_lon -= pi;
}
if (std::abs(lon1 - lon2) > pi)
{
vertex_lon -= pi;
}
return vertex_lon;
}
};
template <typename CT>
class vertex_longitude<CT, cartesian_tag>
{
public :
template <typename Strategy>
static inline CT apply(CT& /*lon1*/,
CT& /*lat1*/,
CT& lon2,
CT& /*lat2*/,
CT const& /*vertex_lat*/,
CT& /*alp1*/,
Strategy const& /*azimuth_strategy*/)
{
return lon2;
}
};
}}} // namespace boost::geometry::formula
#endif // BOOST_GEOMETRY_FORMULAS_MAXIMUM_LONGITUDE_HPP