177 lines
4.7 KiB
C++
177 lines
4.7 KiB
C++
|
// Boost.Geometry
|
||
|
|
||
|
// Copyright (c) 2017-2018 Oracle and/or its affiliates.
|
||
|
|
||
|
// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
|
||
|
|
||
|
// Use, modification and distribution is subject to the Boost Software License,
|
||
|
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
||
|
// http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
#ifndef BOOST_GEOMETRY_FORMULAS_MERIDIAN_INVERSE_HPP
|
||
|
#define BOOST_GEOMETRY_FORMULAS_MERIDIAN_INVERSE_HPP
|
||
|
|
||
|
#include <boost/math/constants/constants.hpp>
|
||
|
|
||
|
#include <boost/geometry/core/radius.hpp>
|
||
|
|
||
|
#include <boost/geometry/util/condition.hpp>
|
||
|
#include <boost/geometry/util/math.hpp>
|
||
|
#include <boost/geometry/util/normalize_spheroidal_coordinates.hpp>
|
||
|
|
||
|
#include <boost/geometry/formulas/flattening.hpp>
|
||
|
#include <boost/geometry/formulas/meridian_segment.hpp>
|
||
|
|
||
|
namespace boost { namespace geometry { namespace formula
|
||
|
{
|
||
|
|
||
|
/*!
|
||
|
\brief Compute the arc length of an ellipse.
|
||
|
*/
|
||
|
|
||
|
template <typename CT, unsigned int Order = 1>
|
||
|
class meridian_inverse
|
||
|
{
|
||
|
|
||
|
public :
|
||
|
|
||
|
struct result
|
||
|
{
|
||
|
result()
|
||
|
: distance(0)
|
||
|
, meridian(false)
|
||
|
{}
|
||
|
|
||
|
CT distance;
|
||
|
bool meridian;
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
static bool meridian_not_crossing_pole(T lat1, T lat2, CT diff)
|
||
|
{
|
||
|
CT half_pi = math::pi<CT>()/CT(2);
|
||
|
return math::equals(diff, CT(0)) ||
|
||
|
(math::equals(lat2, half_pi) && math::equals(lat1, -half_pi));
|
||
|
}
|
||
|
|
||
|
static bool meridian_crossing_pole(CT diff)
|
||
|
{
|
||
|
return math::equals(math::abs(diff), math::pi<CT>());
|
||
|
}
|
||
|
|
||
|
|
||
|
template <typename T, typename Spheroid>
|
||
|
static CT meridian_not_crossing_pole_dist(T lat1, T lat2, Spheroid const& spheroid)
|
||
|
{
|
||
|
return math::abs(apply(lat2, spheroid) - apply(lat1, spheroid));
|
||
|
}
|
||
|
|
||
|
template <typename T, typename Spheroid>
|
||
|
static CT meridian_crossing_pole_dist(T lat1, T lat2, Spheroid const& spheroid)
|
||
|
{
|
||
|
CT c0 = 0;
|
||
|
CT half_pi = math::pi<CT>()/CT(2);
|
||
|
CT lat_sign = 1;
|
||
|
if (lat1+lat2 < c0)
|
||
|
{
|
||
|
lat_sign = CT(-1);
|
||
|
}
|
||
|
return math::abs(lat_sign * CT(2) * apply(half_pi, spheroid)
|
||
|
- apply(lat1, spheroid) - apply(lat2, spheroid));
|
||
|
}
|
||
|
|
||
|
template <typename T, typename Spheroid>
|
||
|
static result apply(T lon1, T lat1, T lon2, T lat2, Spheroid const& spheroid)
|
||
|
{
|
||
|
result res;
|
||
|
|
||
|
CT diff = geometry::math::longitude_distance_signed<geometry::radian>(lon1, lon2);
|
||
|
|
||
|
if (lat1 > lat2)
|
||
|
{
|
||
|
std::swap(lat1, lat2);
|
||
|
}
|
||
|
|
||
|
if ( meridian_not_crossing_pole(lat1, lat2, diff) )
|
||
|
{
|
||
|
res.distance = meridian_not_crossing_pole_dist(lat1, lat2, spheroid);
|
||
|
res.meridian = true;
|
||
|
}
|
||
|
else if ( meridian_crossing_pole(diff) )
|
||
|
{
|
||
|
res.distance = meridian_crossing_pole_dist(lat1, lat2, spheroid);
|
||
|
res.meridian = true;
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
// Distance computation on meridians using series approximations
|
||
|
// to elliptic integrals. Formula to compute distance from lattitude 0 to lat
|
||
|
// https://en.wikipedia.org/wiki/Meridian_arc
|
||
|
// latitudes are assumed to be in radians and in [-pi/2,pi/2]
|
||
|
template <typename T, typename Spheroid>
|
||
|
static CT apply(T lat, Spheroid const& spheroid)
|
||
|
{
|
||
|
CT const a = get_radius<0>(spheroid);
|
||
|
CT const f = formula::flattening<CT>(spheroid);
|
||
|
CT n = f / (CT(2) - f);
|
||
|
CT M = a/(1+n);
|
||
|
CT C0 = 1;
|
||
|
|
||
|
if (Order == 0)
|
||
|
{
|
||
|
return M * C0 * lat;
|
||
|
}
|
||
|
|
||
|
CT C2 = -1.5 * n;
|
||
|
|
||
|
if (Order == 1)
|
||
|
{
|
||
|
return M * (C0 * lat + C2 * sin(2*lat));
|
||
|
}
|
||
|
|
||
|
CT n2 = n * n;
|
||
|
C0 += .25 * n2;
|
||
|
CT C4 = 0.9375 * n2;
|
||
|
|
||
|
if (Order == 2)
|
||
|
{
|
||
|
return M * (C0 * lat + C2 * sin(2*lat) + C4 * sin(4*lat));
|
||
|
}
|
||
|
|
||
|
CT n3 = n2 * n;
|
||
|
C2 += 0.1875 * n3;
|
||
|
CT C6 = -0.729166667 * n3;
|
||
|
|
||
|
if (Order == 3)
|
||
|
{
|
||
|
return M * (C0 * lat + C2 * sin(2*lat) + C4 * sin(4*lat)
|
||
|
+ C6 * sin(6*lat));
|
||
|
}
|
||
|
|
||
|
CT n4 = n2 * n2;
|
||
|
C4 -= 0.234375 * n4;
|
||
|
CT C8 = 0.615234375 * n4;
|
||
|
|
||
|
if (Order == 4)
|
||
|
{
|
||
|
return M * (C0 * lat + C2 * sin(2*lat) + C4 * sin(4*lat)
|
||
|
+ C6 * sin(6*lat) + C8 * sin(8*lat));
|
||
|
}
|
||
|
|
||
|
CT n5 = n4 * n;
|
||
|
C6 += 0.227864583 * n5;
|
||
|
CT C10 = -0.54140625 * n5;
|
||
|
|
||
|
// Order 5 or higher
|
||
|
return M * (C0 * lat + C2 * sin(2*lat) + C4 * sin(4*lat)
|
||
|
+ C6 * sin(6*lat) + C8 * sin(8*lat) + C10 * sin(10*lat));
|
||
|
|
||
|
}
|
||
|
};
|
||
|
|
||
|
}}} // namespace boost::geometry::formula
|
||
|
|
||
|
|
||
|
#endif // BOOST_GEOMETRY_FORMULAS_MERIDIAN_INVERSE_HPP
|