libcarla/include/system/boost/geometry/formulas/karney_direct.hpp

271 lines
9.8 KiB
C++
Raw Permalink Normal View History

2024-10-18 13:19:59 +08:00
// Boost.Geometry
// Copyright (c) 2018 Adeel Ahmad, Islamabad, Pakistan.
// Contributed and/or modified by Adeel Ahmad,
// as part of Google Summer of Code 2018 program.
// This file was modified by Oracle on 2018-2020.
// Modifications copyright (c) 2018-2020 Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// This file is converted from GeographicLib, https://geographiclib.sourceforge.io
// GeographicLib is originally written by Charles Karney.
// Author: Charles Karney (2008-2017)
// Last updated version of GeographicLib: 1.49
// Original copyright notice:
// Copyright (c) Charles Karney (2008-2017) <charles@karney.com> and licensed
// under the MIT/X11 License. For more information, see
// https://geographiclib.sourceforge.io
#ifndef BOOST_GEOMETRY_FORMULAS_KARNEY_DIRECT_HPP
#define BOOST_GEOMETRY_FORMULAS_KARNEY_DIRECT_HPP
#include <boost/array.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/special_functions/hypot.hpp>
#include <boost/geometry/formulas/flattening.hpp>
#include <boost/geometry/formulas/result_direct.hpp>
#include <boost/geometry/util/condition.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/normalize_spheroidal_coordinates.hpp>
#include <boost/geometry/util/series_expansion.hpp>
namespace boost { namespace geometry { namespace formula
{
namespace se = series_expansion;
/*!
\brief The solution of the direct problem of geodesics on latlong coordinates,
after Karney (2011).
\author See
- Charles F.F Karney, Algorithms for geodesics, 2011
https://arxiv.org/pdf/1109.4448.pdf
*/
template <
typename CT,
bool EnableCoordinates = true,
bool EnableReverseAzimuth = false,
bool EnableReducedLength = false,
bool EnableGeodesicScale = false,
size_t SeriesOrder = 8
>
class karney_direct
{
static const bool CalcQuantities = EnableReducedLength || EnableGeodesicScale;
static const bool CalcCoordinates = EnableCoordinates || CalcQuantities;
static const bool CalcRevAzimuth = EnableReverseAzimuth || CalcCoordinates || CalcQuantities;
public:
typedef result_direct<CT> result_type;
template <typename T, typename Dist, typename Azi, typename Spheroid>
static inline result_type apply(T const& lo1,
T const& la1,
Dist const& distance,
Azi const& azimuth12,
Spheroid const& spheroid)
{
result_type result;
CT lon1 = lo1;
CT const lat1 = la1;
Azi azi12 = azimuth12;
math::normalize_azimuth<degree, Azi>(azi12);
CT const c0 = 0;
CT const c1 = 1;
CT const c2 = 2;
CT const b = CT(get_radius<2>(spheroid));
CT const f = formula::flattening<CT>(spheroid);
CT const one_minus_f = c1 - f;
CT const two_minus_f = c2 - f;
CT const n = f / two_minus_f;
CT const e2 = f * two_minus_f;
CT const ep2 = e2 / math::sqr(one_minus_f);
CT sin_alpha1, cos_alpha1;
math::sin_cos_degrees<CT>(azi12, sin_alpha1, cos_alpha1);
// Find the reduced latitude.
CT sin_beta1, cos_beta1;
math::sin_cos_degrees<CT>(lat1, sin_beta1, cos_beta1);
sin_beta1 *= one_minus_f;
math::normalize_unit_vector<CT>(sin_beta1, cos_beta1);
cos_beta1 = (std::max)(c0, cos_beta1);
// Obtain alpha 0 by solving the spherical triangle.
CT const sin_alpha0 = sin_alpha1 * cos_beta1;
CT const cos_alpha0 = boost::math::hypot(cos_alpha1, sin_alpha1 * sin_beta1);
CT const k2 = math::sqr(cos_alpha0) * ep2;
CT const epsilon = k2 / (c2 * (c1 + math::sqrt(c1 + k2)) + k2);
// Find the coefficients for A1 by computing the
// series expansion using Horner scehme.
CT const expansion_A1 = se::evaluate_A1<SeriesOrder>(epsilon);
// Index zero element of coeffs_C1 is unused.
se::coeffs_C1<SeriesOrder, CT> const coeffs_C1(epsilon);
// Tau is an integration variable.
CT const tau12 = distance / (b * (c1 + expansion_A1));
CT const sin_tau12 = sin(tau12);
CT const cos_tau12 = cos(tau12);
CT sin_sigma1 = sin_beta1;
CT sin_omega1 = sin_alpha0 * sin_beta1;
CT cos_sigma1, cos_omega1;
cos_sigma1 = cos_omega1 = sin_beta1 != c0 || cos_alpha1 != c0 ? cos_beta1 * cos_alpha1 : c1;
math::normalize_unit_vector<CT>(sin_sigma1, cos_sigma1);
CT const B11 = se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C1);
CT const sin_B11 = sin(B11);
CT const cos_B11 = cos(B11);
CT const sin_tau1 = sin_sigma1 * cos_B11 + cos_sigma1 * sin_B11;
CT const cos_tau1 = cos_sigma1 * cos_B11 - sin_sigma1 * sin_B11;
// Index zero element of coeffs_C1p is unused.
se::coeffs_C1p<SeriesOrder, CT> const coeffs_C1p(epsilon);
CT const B12 = - se::sin_cos_series
(sin_tau1 * cos_tau12 + cos_tau1 * sin_tau12,
cos_tau1 * cos_tau12 - sin_tau1 * sin_tau12,
coeffs_C1p);
CT const sigma12 = tau12 - (B12 - B11);
CT const sin_sigma12 = sin(sigma12);
CT const cos_sigma12 = cos(sigma12);
CT const sin_sigma2 = sin_sigma1 * cos_sigma12 + cos_sigma1 * sin_sigma12;
CT const cos_sigma2 = cos_sigma1 * cos_sigma12 - sin_sigma1 * sin_sigma12;
if (BOOST_GEOMETRY_CONDITION(CalcRevAzimuth))
{
CT const sin_alpha2 = sin_alpha0;
CT const cos_alpha2 = cos_alpha0 * cos_sigma2;
result.reverse_azimuth = atan2(sin_alpha2, cos_alpha2);
// Convert the angle to radians.
result.reverse_azimuth /= math::d2r<CT>();
}
if (BOOST_GEOMETRY_CONDITION(CalcCoordinates))
{
// Find the latitude at the second point.
CT const sin_beta2 = cos_alpha0 * sin_sigma2;
CT const cos_beta2 = boost::math::hypot(sin_alpha0, cos_alpha0 * cos_sigma2);
result.lat2 = atan2(sin_beta2, one_minus_f * cos_beta2);
// Convert the coordinate to radians.
result.lat2 /= math::d2r<CT>();
// Find the longitude at the second point.
CT const sin_omega2 = sin_alpha0 * sin_sigma2;
CT const cos_omega2 = cos_sigma2;
CT const omega12 = atan2(sin_omega2 * cos_omega1 - cos_omega2 * sin_omega1,
cos_omega2 * cos_omega1 + sin_omega2 * sin_omega1);
se::coeffs_A3<SeriesOrder, CT> const coeffs_A3(n);
CT const A3 = math::horner_evaluate(epsilon, coeffs_A3.begin(), coeffs_A3.end());
CT const A3c = -f * sin_alpha0 * A3;
se::coeffs_C3<SeriesOrder, CT> const coeffs_C3(n, epsilon);
CT const B31 = se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C3);
CT const lam12 = omega12 + A3c *
(sigma12 + (se::sin_cos_series
(sin_sigma2,
cos_sigma2,
coeffs_C3) - B31));
// Convert to radians to get the
// longitudinal difference.
CT lon12 = lam12 / math::d2r<CT>();
// Add the longitude at first point to the longitudinal
// difference and normalize the result.
math::normalize_longitude<degree, CT>(lon1);
math::normalize_longitude<degree, CT>(lon12);
result.lon2 = lon1 + lon12;
// For longitudes close to the antimeridian the result can be out
// of range. Therefore normalize.
// In other formulas this has to be done at the end because
// otherwise differential quantities are calculated incorrectly.
// But here it's ok since result.lon2 is not used after this point.
math::normalize_longitude<degree, CT>(result.lon2);
}
if (BOOST_GEOMETRY_CONDITION(CalcQuantities))
{
// Evaluate the coefficients for C2.
// Index zero element of coeffs_C2 is unused.
se::coeffs_C2<SeriesOrder, CT> const coeffs_C2(epsilon);
CT const B21 = se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C2);
CT const B22 = se::sin_cos_series(sin_sigma2, cos_sigma2, coeffs_C2);
// Find the coefficients for A2 by computing the
// series expansion using Horner scehme.
CT const expansion_A2 = se::evaluate_A2<SeriesOrder>(epsilon);
CT const AB1 = (c1 + expansion_A1) * (B12 - B11);
CT const AB2 = (c1 + expansion_A2) * (B22 - B21);
CT const J12 = (expansion_A1 - expansion_A2) * sigma12 + (AB1 - AB2);
CT const dn1 = math::sqrt(c1 + ep2 * math::sqr(sin_beta1));
CT const dn2 = math::sqrt(c1 + k2 * math::sqr(sin_sigma2));
// Find the reduced length.
result.reduced_length = b * ((dn2 * (cos_sigma1 * sin_sigma2) -
dn1 * (sin_sigma1 * cos_sigma2)) -
cos_sigma1 * cos_sigma2 * J12);
// Find the geodesic scale.
CT const t = k2 * (sin_sigma2 - sin_sigma1) *
(sin_sigma2 + sin_sigma1) / (dn1 + dn2);
result.geodesic_scale = cos_sigma12 +
(t * sin_sigma2 - cos_sigma2 * J12) *
sin_sigma1 / dn1;
}
return result;
}
};
}}} // namespace boost::geometry::formula
#endif // BOOST_GEOMETRY_FORMULAS_KARNEY_DIRECT_HPP