libcarla/include/system/boost/geometry/algorithms/simplify.hpp

1088 lines
36 KiB
C++
Raw Permalink Normal View History

2024-10-18 13:19:59 +08:00
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2015 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2015 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2015 Mateusz Loskot, London, UK.
// This file was modified by Oracle on 2018-2022.
// Modifications copyright (c) 2018-2022 Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_SIMPLIFY_HPP
#define BOOST_GEOMETRY_ALGORITHMS_SIMPLIFY_HPP
#include <cstddef>
#ifdef BOOST_GEOMETRY_DEBUG_DOUGLAS_PEUCKER
#include <iostream>
#endif
#include <set>
#include <vector>
#include <boost/core/addressof.hpp>
#include <boost/core/ignore_unused.hpp>
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/range/size.hpp>
#include <boost/range/value_type.hpp>
#include <boost/geometry/algorithms/area.hpp>
#include <boost/geometry/algorithms/clear.hpp>
#include <boost/geometry/algorithms/convert.hpp>
#include <boost/geometry/algorithms/detail/dummy_geometries.hpp>
#include <boost/geometry/algorithms/detail/equals/point_point.hpp>
#include <boost/geometry/algorithms/detail/visit.hpp>
#include <boost/geometry/algorithms/not_implemented.hpp>
#include <boost/geometry/algorithms/is_empty.hpp>
#include <boost/geometry/algorithms/perimeter.hpp>
#include <boost/geometry/core/cs.hpp>
#include <boost/geometry/core/closure.hpp>
#include <boost/geometry/core/exterior_ring.hpp>
#include <boost/geometry/core/interior_rings.hpp>
#include <boost/geometry/core/mutable_range.hpp>
#include <boost/geometry/core/tags.hpp>
#include <boost/geometry/core/visit.hpp>
#include <boost/geometry/geometries/adapted/boost_variant.hpp> // For backward compatibility
#include <boost/geometry/geometries/concepts/check.hpp>
#include <boost/geometry/strategies/concepts/simplify_concept.hpp>
#include <boost/geometry/strategies/default_strategy.hpp>
#include <boost/geometry/strategies/detail.hpp>
#include <boost/geometry/strategies/distance/comparable.hpp>
#include <boost/geometry/strategies/simplify/cartesian.hpp>
#include <boost/geometry/strategies/simplify/geographic.hpp>
#include <boost/geometry/strategies/simplify/spherical.hpp>
#include <boost/geometry/util/type_traits_std.hpp>
#ifdef BOOST_GEOMETRY_DEBUG_DOUGLAS_PEUCKER
#include <boost/geometry/io/dsv/write.hpp>
#endif
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace simplify
{
/*!
\brief Small wrapper around a point, with an extra member "included"
\details
It has a const-reference to the original point (so no copy here)
\tparam the enclosed point type
*/
template <typename Point>
struct douglas_peucker_point
{
typedef Point point_type;
Point const* p;
bool included;
inline douglas_peucker_point(Point const& ap)
: p(boost::addressof(ap))
, included(false)
{}
};
/*!
\brief Implements the simplify algorithm.
\details The douglas_peucker policy simplifies a linestring, ring or
vector of points using the well-known Douglas-Peucker algorithm.
\note This strategy uses itself a point-segment potentially comparable
distance strategy
\author Barend and Maarten, 1995/1996
\author Barend, revised for Generic Geometry Library, 2008
*/
/*
For the algorithm, see for example:
- http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm
- http://www2.dcs.hull.ac.uk/CISRG/projects/Royal-Inst/demos/dp.html
*/
class douglas_peucker
{
template <typename Iterator, typename Distance, typename PSDistanceStrategy>
static inline void consider(Iterator begin,
Iterator end,
Distance const& max_dist,
int& n,
PSDistanceStrategy const& ps_distance_strategy)
{
typedef typename std::iterator_traits<Iterator>::value_type::point_type point_type;
typedef decltype(ps_distance_strategy.apply(std::declval<point_type>(),
std::declval<point_type>(), std::declval<point_type>())) distance_type;
std::size_t size = end - begin;
// size must be at least 3
// because we want to consider a candidate point in between
if (size <= 2)
{
#ifdef BOOST_GEOMETRY_DEBUG_DOUGLAS_PEUCKER
if (begin != end)
{
std::cout << "ignore between " << dsv(*(begin->p))
<< " and " << dsv(*((end - 1)->p))
<< " size=" << size << std::endl;
}
std::cout << "return because size=" << size << std::endl;
#endif
return;
}
Iterator last = end - 1;
#ifdef BOOST_GEOMETRY_DEBUG_DOUGLAS_PEUCKER
std::cout << "find between " << dsv(*(begin->p))
<< " and " << dsv(*(last->p))
<< " size=" << size << std::endl;
#endif
// Find most far point, compare to the current segment
//geometry::segment<Point const> s(begin->p, last->p);
distance_type md(-1.0); // any value < 0
Iterator candidate = end;
for (Iterator it = begin + 1; it != last; ++it)
{
distance_type dist = ps_distance_strategy.apply(*(it->p), *(begin->p), *(last->p));
#ifdef BOOST_GEOMETRY_DEBUG_DOUGLAS_PEUCKER
std::cout << "consider " << dsv(*(it->p))
<< " at " << double(dist)
<< ((dist > max_dist) ? " maybe" : " no")
<< std::endl;
#endif
if (md < dist)
{
md = dist;
candidate = it;
}
}
// If a point is found, set the include flag
// and handle segments in between recursively
if (max_dist < md && candidate != end)
{
#ifdef BOOST_GEOMETRY_DEBUG_DOUGLAS_PEUCKER
std::cout << "use " << dsv(candidate->p) << std::endl;
#endif
candidate->included = true;
n++;
consider(begin, candidate + 1, max_dist, n, ps_distance_strategy);
consider(candidate, end, max_dist, n, ps_distance_strategy);
}
}
template
<
typename Range, typename OutputIterator, typename Distance,
typename PSDistanceStrategy
>
static inline OutputIterator apply_(Range const& range,
OutputIterator out,
Distance const& max_distance,
PSDistanceStrategy const& ps_distance_strategy)
{
#ifdef BOOST_GEOMETRY_DEBUG_DOUGLAS_PEUCKER
std::cout << "max distance: " << max_distance
<< std::endl << std::endl;
#endif
typedef typename boost::range_value<Range>::type point_type;
typedef douglas_peucker_point<point_type> dp_point_type;
// Copy coordinates, a vector of references to all points
std::vector<dp_point_type> ref_candidates(boost::begin(range),
boost::end(range));
// Include first and last point of line,
// they are always part of the line
int n = 2;
ref_candidates.front().included = true;
ref_candidates.back().included = true;
// Get points, recursively, including them if they are further away
// than the specified distance
consider(boost::begin(ref_candidates), boost::end(ref_candidates), max_distance, n,
ps_distance_strategy);
// Copy included elements to the output
for (auto it = boost::begin(ref_candidates); it != boost::end(ref_candidates); ++it)
{
if (it->included)
{
// copy-coordinates does not work because OutputIterator
// does not model Point (??)
//geometry::convert(*(it->p), *out);
*out = *(it->p);
++out;
}
}
return out;
}
public:
template <typename Range, typename OutputIterator, typename Distance, typename Strategies>
static inline OutputIterator apply(Range const& range,
OutputIterator out,
Distance const& max_distance,
Strategies const& strategies)
{
typedef typename boost::range_value<Range>::type point_type;
typedef decltype(strategies.distance(detail::dummy_point(), detail::dummy_segment())) distance_strategy_type;
typedef typename strategy::distance::services::comparable_type
<
distance_strategy_type
>::type comparable_distance_strategy_type;
comparable_distance_strategy_type cstrategy = strategy::distance::services::get_comparable
<
distance_strategy_type
>::apply(strategies.distance(detail::dummy_point(), detail::dummy_segment()));
return apply_(range, out,
strategy::distance::services::result_from_distance
<
comparable_distance_strategy_type, point_type, point_type
>::apply(cstrategy, max_distance),
cstrategy);
}
};
template <typename Range, typename Strategies>
inline bool is_degenerate(Range const& range, Strategies const& strategies)
{
return boost::size(range) == 2
&& detail::equals::equals_point_point(geometry::range::front(range),
geometry::range::back(range),
strategies);
}
struct simplify_range_insert
{
template
<
typename Range, typename OutputIterator, typename Distance,
typename Impl, typename Strategies
>
static inline void apply(Range const& range, OutputIterator out,
Distance const& max_distance,
Impl const& impl,
Strategies const& strategies)
{
if (is_degenerate(range, strategies))
{
std::copy(boost::begin(range), boost::begin(range) + 1, out);
}
else if (boost::size(range) <= 2 || max_distance < 0)
{
std::copy(boost::begin(range), boost::end(range), out);
}
else
{
impl.apply(range, out, max_distance, strategies);
}
}
};
struct simplify_copy_assign
{
template
<
typename In, typename Out, typename Distance,
typename Impl, typename Strategies
>
static inline void apply(In const& in, Out& out,
Distance const& ,
Impl const& ,
Strategies const& )
{
out = in;
}
};
struct simplify_copy
{
template
<
typename RangeIn, typename RangeOut, typename Distance,
typename Impl, typename Strategies
>
static inline void apply(RangeIn const& range, RangeOut& out,
Distance const& ,
Impl const& ,
Strategies const& )
{
std::copy(boost::begin(range), boost::end(range),
geometry::range::back_inserter(out));
}
};
template <std::size_t MinimumToUseStrategy>
struct simplify_range
{
template
<
typename RangeIn, typename RangeOut, typename Distance,
typename Impl, typename Strategies
>
static inline void apply(RangeIn const& range, RangeOut& out,
Distance const& max_distance,
Impl const& impl,
Strategies const& strategies)
{
// For a RING:
// Note that, especially if max_distance is too large,
// the output ring might be self intersecting while the input ring is
// not, although chances are low in normal polygons
if (boost::size(range) <= MinimumToUseStrategy || max_distance < 0)
{
simplify_copy::apply(range, out, max_distance, impl, strategies);
}
else
{
simplify_range_insert::apply(range, geometry::range::back_inserter(out),
max_distance, impl, strategies);
}
// Verify the two remaining points are equal. If so, remove one of them.
// This can cause the output being under the minimum size
if (is_degenerate(out, strategies))
{
range::resize(out, 1);
}
}
};
struct simplify_ring
{
private :
template <typename Area>
static inline int area_sign(Area const& area)
{
return area > 0 ? 1 : area < 0 ? -1 : 0;
}
template <typename Ring, typename Strategies>
static std::size_t get_opposite(std::size_t index, Ring const& ring,
Strategies const& strategies)
{
// TODO: Instead of calling the strategy call geometry::comparable_distance() ?
auto const cdistance_strategy = strategies::distance::detail::make_comparable(strategies)
.distance(detail::dummy_point(), detail::dummy_point());
using point_type = typename geometry::point_type<Ring>::type;
using cdistance_type = decltype(cdistance_strategy.apply(
std::declval<point_type>(), std::declval<point_type>()));
// Verify if it is NOT the case that all points are less than the
// simplifying distance. If so, output is empty.
cdistance_type max_cdistance(-1);
point_type const& point = range::at(ring, index);
std::size_t i = 0;
for (auto it = boost::begin(ring); it != boost::end(ring); ++it, ++i)
{
cdistance_type const cdistance = cdistance_strategy.apply(*it, point);
if (cdistance > max_cdistance)
{
max_cdistance = cdistance;
index = i;
}
}
return index;
}
public :
template
<
typename RingIn, typename RingOut,
typename Distance, typename Impl, typename Strategies
>
static inline void apply(RingIn const& ring, RingOut& out, Distance const& max_distance,
Impl const& impl, Strategies const& strategies)
{
std::size_t const size = boost::size(ring);
if (size == 0)
{
return;
}
bool const is_closed_in = geometry::closure<RingIn>::value == closed;
bool const is_closed_out = geometry::closure<RingOut>::value == closed;
bool const is_clockwise_in = geometry::point_order<RingIn>::value == clockwise;
bool const is_clockwise_out = geometry::point_order<RingOut>::value == clockwise;
// TODO: instead of area() use calculate_point_order() ?
int const input_sign = area_sign(geometry::area(ring, strategies));
std::set<std::size_t> visited_indexes;
// Rotate it into a copied vector
// (vector, because source type might not support rotation)
// (duplicate end point will be simplified away)
typedef typename geometry::point_type<RingIn>::type point_type;
std::vector<point_type> rotated;
rotated.reserve(size + 1); // 1 because open rings are closed
// Closing point (but it will not start here)
std::size_t index = 0;
// Iterate (usually one iteration is enough)
for (std::size_t iteration = 0; iteration < 4u; iteration++)
{
// Always take the opposite. Opposite guarantees that no point
// "halfway" is chosen, creating an artefact (very narrow triangle)
// Iteration 0: opposite to closing point (1/2, = on convex hull)
// (this will start simplification with that point
// and its opposite ~0)
// Iteration 1: move a quarter on that ring, then opposite to 1/4
// (with its opposite 3/4)
// Iteration 2: move an eight on that ring, then opposite (1/8)
// Iteration 3: again move a quarter, then opposite (7/8)
// So finally 8 "sides" of the ring have been examined (if it were
// a semi-circle). Most probably, there are only 0 or 1 iterations.
switch (iteration)
{
case 1 : index = (index + size / 4) % size; break;
case 2 : index = (index + size / 8) % size; break;
case 3 : index = (index + size / 4) % size; break;
}
index = get_opposite(index, ring, strategies);
if (visited_indexes.count(index) > 0)
{
// Avoid trying the same starting point more than once
continue;
}
// Do not duplicate the closing point
auto rot_end = boost::end(ring);
std::size_t rot_index = index;
if (is_closed_in && size > 1)
{
--rot_end;
if (rot_index == size - 1) { rot_index = 0; }
}
std::rotate_copy(boost::begin(ring), range::pos(ring, rot_index),
rot_end, std::back_inserter(rotated));
// Close the rotated copy
rotated.push_back(range::at(ring, rot_index));
simplify_range<0>::apply(rotated, out, max_distance, impl, strategies);
// Open output if needed
if (! is_closed_out && boost::size(out) > 1)
{
range::pop_back(out);
}
// TODO: instead of area() use calculate_point_order() ?
// Verify that what was positive, stays positive (or goes to 0)
// and what was negative stays negative (or goes to 0)
int const output_sign = area_sign(geometry::area(out, strategies));
if (output_sign == input_sign)
{
// Result is considered as satisfactory (usually this is the
// first iteration - only for small rings, having a scale
// similar to simplify_distance, next iterations are tried
return;
}
// Original is simplified away. Possibly there is a solution
// when another starting point is used
geometry::clear(out);
if (iteration == 0
&& geometry::perimeter(ring, strategies) < 3 * max_distance)
{
// Check if it is useful to iterate. A minimal triangle has a
// perimeter of a bit more than 3 times the simplify distance
return;
}
// Prepare next try
visited_indexes.insert(index);
rotated.clear();
}
if (BOOST_GEOMETRY_CONDITION(is_clockwise_in != is_clockwise_out))
{
std::reverse(boost::begin(out), boost::end(out));
}
}
};
struct simplify_polygon
{
private:
template
<
typename IteratorIn,
typename InteriorRingsOut,
typename Distance,
typename Impl,
typename Strategies
>
static inline void iterate(IteratorIn begin, IteratorIn end,
InteriorRingsOut& interior_rings_out,
Distance const& max_distance,
Impl const& impl, Strategies const& strategies)
{
typedef typename boost::range_value<InteriorRingsOut>::type single_type;
for (IteratorIn it = begin; it != end; ++it)
{
single_type out;
simplify_ring::apply(*it, out, max_distance, impl, strategies);
if (! geometry::is_empty(out))
{
range::push_back(interior_rings_out, std::move(out));
}
}
}
template
<
typename InteriorRingsIn,
typename InteriorRingsOut,
typename Distance,
typename Impl,
typename Strategies
>
static inline void apply_interior_rings(InteriorRingsIn const& interior_rings_in,
InteriorRingsOut& interior_rings_out,
Distance const& max_distance,
Impl const& impl, Strategies const& strategies)
{
range::clear(interior_rings_out);
iterate(boost::begin(interior_rings_in), boost::end(interior_rings_in),
interior_rings_out,
max_distance,
impl, strategies);
}
public:
template
<
typename PolygonIn, typename PolygonOut,
typename Distance, typename Impl, typename Strategies
>
static inline void apply(PolygonIn const& poly_in, PolygonOut& poly_out,
Distance const& max_distance,
Impl const& impl, Strategies const& strategies)
{
// Note that if there are inner rings, and distance is too large,
// they might intersect with the outer ring in the output,
// while it didn't in the input.
simplify_ring::apply(exterior_ring(poly_in), exterior_ring(poly_out),
max_distance, impl, strategies);
apply_interior_rings(interior_rings(poly_in), interior_rings(poly_out),
max_distance, impl, strategies);
}
};
template<typename Policy>
struct simplify_multi
{
template
<
typename MultiGeometryIn, typename MultiGeometryOut,
typename Distance, typename Impl, typename Strategies
>
static inline void apply(MultiGeometryIn const& multi, MultiGeometryOut& out,
Distance const& max_distance,
Impl const& impl, Strategies const& strategies)
{
range::clear(out);
using single_type = typename boost::range_value<MultiGeometryOut>::type;
for (auto it = boost::begin(multi); it != boost::end(multi); ++it)
{
single_type single_out;
Policy::apply(*it, single_out, max_distance, impl, strategies);
if (! geometry::is_empty(single_out))
{
range::push_back(out, std::move(single_out));
}
}
}
};
template <typename Geometry>
struct has_same_tag_as
{
template <typename OtherGeometry>
struct pred
: std::is_same
<
typename geometry::tag<Geometry>::type,
typename geometry::tag<OtherGeometry>::type
>
{};
};
template <typename StaticGeometryIn, typename DynamicGeometryOut>
struct static_geometry_type
{
using type = typename util::sequence_find_if
<
typename traits::geometry_types<DynamicGeometryOut>::type,
detail::simplify::has_same_tag_as<StaticGeometryIn>::template pred
>::type;
BOOST_GEOMETRY_STATIC_ASSERT(
(! std::is_void<type>::value),
"Unable to find corresponding geometry in GeometryOut",
StaticGeometryIn, DynamicGeometryOut);
};
}} // namespace detail::simplify
#endif // DOXYGEN_NO_DETAIL
#ifndef DOXYGEN_NO_DISPATCH
namespace dispatch
{
template
<
typename GeometryIn,
typename GeometryOut,
typename TagIn = typename tag<GeometryIn>::type,
typename TagOut = typename tag<GeometryOut>::type
>
struct simplify: not_implemented<TagIn, TagOut>
{};
template <typename PointIn, typename PointOut>
struct simplify<PointIn, PointOut, point_tag, point_tag>
{
template <typename Distance, typename Impl, typename Strategy>
static inline void apply(PointIn const& point, PointOut& out, Distance const& ,
Impl const& , Strategy const& )
{
geometry::convert(point, out);
}
};
template <typename SegmentIn, typename SegmentOut>
struct simplify<SegmentIn, SegmentOut, segment_tag, segment_tag>
: detail::simplify::simplify_copy_assign
{};
template <typename BoxIn, typename BoxOut>
struct simplify<BoxIn, BoxOut, box_tag, box_tag>
: detail::simplify::simplify_copy_assign
{};
// Linestring, keep 2 points (unless those points are the same)
template <typename LinestringIn, typename LinestringOut>
struct simplify<LinestringIn, LinestringOut, linestring_tag, linestring_tag>
: detail::simplify::simplify_range<2>
{};
template <typename RingIn, typename RingOut>
struct simplify<RingIn, RingOut, ring_tag, ring_tag>
: detail::simplify::simplify_ring
{};
template <typename PolygonIn, typename PolygonOut>
struct simplify<PolygonIn, PolygonOut, polygon_tag, polygon_tag>
: detail::simplify::simplify_polygon
{};
template <typename MultiPointIn, typename MultiPointOut>
struct simplify<MultiPointIn, MultiPointOut, multi_point_tag, multi_point_tag>
: detail::simplify::simplify_copy
{};
template <typename MultiLinestringIn, typename MultiLinestringOut>
struct simplify<MultiLinestringIn, MultiLinestringOut, multi_linestring_tag, multi_linestring_tag>
: detail::simplify::simplify_multi<detail::simplify::simplify_range<2> >
{};
template <typename MultiPolygonIn, typename MultiPolygonOut>
struct simplify<MultiPolygonIn, MultiPolygonOut, multi_polygon_tag, multi_polygon_tag>
: detail::simplify::simplify_multi<detail::simplify::simplify_polygon>
{};
template
<
typename Geometry,
typename Tag = typename tag<Geometry>::type
>
struct simplify_insert: not_implemented<Tag>
{};
template <typename Linestring>
struct simplify_insert<Linestring, linestring_tag>
: detail::simplify::simplify_range_insert
{};
template <typename Ring>
struct simplify_insert<Ring, ring_tag>
: detail::simplify::simplify_range_insert
{};
} // namespace dispatch
#endif // DOXYGEN_NO_DISPATCH
namespace resolve_strategy
{
template
<
typename Strategies,
bool IsUmbrella = strategies::detail::is_umbrella_strategy<Strategies>::value
>
struct simplify
{
template <typename GeometryIn, typename GeometryOut, typename Distance>
static inline void apply(GeometryIn const& geometry,
GeometryOut& out,
Distance const& max_distance,
Strategies const& strategies)
{
dispatch::simplify
<
GeometryIn, GeometryOut
>::apply(geometry, out, max_distance,
detail::simplify::douglas_peucker(),
strategies);
}
};
template <typename Strategy>
struct simplify<Strategy, false>
{
template <typename GeometryIn, typename GeometryOut, typename Distance>
static inline void apply(GeometryIn const& geometry,
GeometryOut& out,
Distance const& max_distance,
Strategy const& strategy)
{
using strategies::simplify::services::strategy_converter;
simplify
<
decltype(strategy_converter<Strategy>::get(strategy))
>::apply(geometry, out, max_distance,
strategy_converter<Strategy>::get(strategy));
}
};
template <>
struct simplify<default_strategy, false>
{
template <typename GeometryIn, typename GeometryOut, typename Distance>
static inline void apply(GeometryIn const& geometry,
GeometryOut& out,
Distance const& max_distance,
default_strategy)
{
// NOTE: Alternatively take two geometry types in default_strategy
using cs_tag1_t = typename geometry::cs_tag<GeometryIn>::type;
using cs_tag2_t = typename geometry::cs_tag<GeometryOut>::type;
BOOST_GEOMETRY_STATIC_ASSERT(
(std::is_same<cs_tag1_t, cs_tag2_t>::value),
"Incompatible coordinate systems",
cs_tag1_t, cs_tag2_t);
typedef typename strategies::simplify::services::default_strategy
<
GeometryIn
>::type strategy_type;
simplify
<
strategy_type
>::apply(geometry, out, max_distance, strategy_type());
}
};
template
<
typename Strategies,
bool IsUmbrella = strategies::detail::is_umbrella_strategy<Strategies>::value
>
struct simplify_insert
{
template<typename Geometry, typename OutputIterator, typename Distance>
static inline void apply(Geometry const& geometry,
OutputIterator& out,
Distance const& max_distance,
Strategies const& strategies)
{
dispatch::simplify_insert
<
Geometry
>::apply(geometry, out, max_distance,
detail::simplify::douglas_peucker(),
strategies);
}
};
template <typename Strategy>
struct simplify_insert<Strategy, false>
{
template<typename Geometry, typename OutputIterator, typename Distance>
static inline void apply(Geometry const& geometry,
OutputIterator& out,
Distance const& max_distance,
Strategy const& strategy)
{
using strategies::simplify::services::strategy_converter;
simplify_insert
<
decltype(strategy_converter<Strategy>::get(strategy))
>::apply(geometry, out, max_distance,
strategy_converter<Strategy>::get(strategy));
}
};
template <>
struct simplify_insert<default_strategy, false>
{
template <typename Geometry, typename OutputIterator, typename Distance>
static inline void apply(Geometry const& geometry,
OutputIterator& out,
Distance const& max_distance,
default_strategy)
{
typedef typename strategies::simplify::services::default_strategy
<
Geometry
>::type strategy_type;
simplify_insert
<
strategy_type
>::apply(geometry, out, max_distance, strategy_type());
}
};
} // namespace resolve_strategy
namespace resolve_dynamic {
template
<
typename GeometryIn, typename GeometryOut,
typename TagIn = typename tag<GeometryIn>::type,
typename TagOut = typename tag<GeometryOut>::type
>
struct simplify
{
template <typename Distance, typename Strategy>
static inline void apply(GeometryIn const& geometry,
GeometryOut& out,
Distance const& max_distance,
Strategy const& strategy)
{
resolve_strategy::simplify<Strategy>::apply(geometry, out, max_distance, strategy);
}
};
template <typename GeometryIn, typename GeometryOut>
struct simplify<GeometryIn, GeometryOut, dynamic_geometry_tag, dynamic_geometry_tag>
{
template <typename Distance, typename Strategy>
static inline void apply(GeometryIn const& geometry,
GeometryOut& out,
Distance const& max_distance,
Strategy const& strategy)
{
traits::visit<GeometryIn>::apply([&](auto const& g)
{
using geom_t = util::remove_cref_t<decltype(g)>;
using detail::simplify::static_geometry_type;
using geom_out_t = typename static_geometry_type<geom_t, GeometryOut>::type;
geom_out_t o;
simplify<geom_t, geom_out_t>::apply(g, o, max_distance, strategy);
out = std::move(o);
}, geometry);
}
};
template <typename GeometryIn, typename GeometryOut>
struct simplify<GeometryIn, GeometryOut, geometry_collection_tag, geometry_collection_tag>
{
template <typename Distance, typename Strategy>
static inline void apply(GeometryIn const& geometry,
GeometryOut& out,
Distance const& max_distance,
Strategy const& strategy)
{
detail::visit_breadth_first([&](auto const& g)
{
using geom_t = util::remove_cref_t<decltype(g)>;
using detail::simplify::static_geometry_type;
using geom_out_t = typename static_geometry_type<geom_t, GeometryOut>::type;
geom_out_t o;
simplify<geom_t, geom_out_t>::apply(g, o, max_distance, strategy);
traits::emplace_back<GeometryOut>::apply(out, std::move(o));
return true;
}, geometry);
}
};
} // namespace resolve_dynamic
/*!
\brief Simplify a geometry using a specified strategy
\ingroup simplify
\tparam Geometry \tparam_geometry
\tparam GeometryOut The output geometry
\tparam Distance A numerical distance measure
\tparam Strategy A type fulfilling a SimplifyStrategy concept
\param strategy A strategy to calculate simplification
\param geometry input geometry, to be simplified
\param out output geometry, simplified version of the input geometry
\param max_distance distance (in units of input coordinates) of a vertex
to other segments to be removed
\param strategy simplify strategy to be used for simplification
\note The simplification is done with Douglas-Peucker algorithm
\image html svg_simplify_country.png "The image below presents the simplified country"
\qbk{distinguish,with strategy}
*/
template<typename Geometry, typename GeometryOut, typename Distance, typename Strategy>
inline void simplify(Geometry const& geometry, GeometryOut& out,
Distance const& max_distance, Strategy const& strategy)
{
concepts::check<Geometry const>();
concepts::check<GeometryOut>();
geometry::clear(out);
resolve_dynamic::simplify<Geometry, GeometryOut>::apply(geometry, out, max_distance, strategy);
}
/*!
\brief Simplify a geometry
\ingroup simplify
\tparam Geometry \tparam_geometry
\tparam GeometryOut The output geometry
\tparam Distance \tparam_numeric
\param geometry input geometry, to be simplified
\param out output geometry, simplified version of the input geometry
\param max_distance distance (in units of input coordinates) of a vertex
to other segments to be removed
\note The simplification is done with Douglas-Peucker algorithm
\qbk{[include reference/algorithms/simplify.qbk]}
*/
template<typename Geometry, typename GeometryOut, typename Distance>
inline void simplify(Geometry const& geometry, GeometryOut& out,
Distance const& max_distance)
{
concepts::check<Geometry const>();
concepts::check<GeometryOut>();
geometry::simplify(geometry, out, max_distance, default_strategy());
}
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace simplify
{
/*!
\brief Simplify a geometry, using an output iterator
and a specified strategy
\ingroup simplify
\tparam Geometry \tparam_geometry
\param geometry input geometry, to be simplified
\param out output iterator, outputs all simplified points
\param max_distance distance (in units of input coordinates) of a vertex
to other segments to be removed
\param strategy simplify strategy to be used for simplification
\qbk{distinguish,with strategy}
\qbk{[include reference/algorithms/simplify.qbk]}
*/
template<typename Geometry, typename OutputIterator, typename Distance, typename Strategy>
inline void simplify_insert(Geometry const& geometry, OutputIterator out,
Distance const& max_distance, Strategy const& strategy)
{
concepts::check<Geometry const>();
resolve_strategy::simplify_insert<Strategy>::apply(geometry, out, max_distance, strategy);
}
/*!
\brief Simplify a geometry, using an output iterator
\ingroup simplify
\tparam Geometry \tparam_geometry
\param geometry input geometry, to be simplified
\param out output iterator, outputs all simplified points
\param max_distance distance (in units of input coordinates) of a vertex
to other segments to be removed
\qbk{[include reference/algorithms/simplify_insert.qbk]}
*/
template<typename Geometry, typename OutputIterator, typename Distance>
inline void simplify_insert(Geometry const& geometry, OutputIterator out,
Distance const& max_distance)
{
// Concept: output point type = point type of input geometry
concepts::check<Geometry const>();
concepts::check<typename point_type<Geometry>::type>();
simplify_insert(geometry, out, max_distance, default_strategy());
}
}} // namespace detail::simplify
#endif // DOXYGEN_NO_DETAIL
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_SIMPLIFY_HPP